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This study treats the determination of eigenvalues and eigenvectors of large
algebraic systems. The methods developed are applicable to finding the natural
frequencies and modes of vibration of large structural systems.

For distinct eigenvalues the method is an application of the modified Newton-

Raphson method that turns out to be more efficient than the standard competing
schemes.

For close or multiple eigenvalues, the modified Newton-Raphson method is generalize
to form a new process. The entire set of close eigenvalues and their eigenvectors
are found at the same time in a two-step procedure. The subspace of the approximate
eigenvectors is first projected onto the subspace of the true eigenvectors. If the
eigenvalues are multiple, the results of the first stage indicate this fact and the
process terminates. If they are merely close, a single rotation in the newly found
space solves a small eigenvalue problem and provides the final results for the close
set. The procedure for subspace projection can be expressed as a simple extremum

problem that generalizes the known extremum property of eigenvectors.

Computational effort and convergence are studied in three example problems. The
method turns out to be more efficient than subspace iteration.
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,- 1. INTRODUCTION
a.

1.1 General

-. Various engineering problems can be reduced to the solution of matrix

" eigenvalue problems. Typical examples in the field of structural engineering
are the problem of determination of natural frequencies and the corresponding

normal modes in a dynamic analysis and the problem of finding buckling loads

in a stability analysis of structures. Since the advent of the digital com-

. puter, the complexity of structures which can be treated and the order of

the corresponding eigenvalue problems have been greatly increased. Hence,

" "the development of solution techniques for such problems has attracted much

attention.

For the dynamic analysis of a linear discrete structural system by

*superposition of modes, we must first solve the problem of free vibration

*of the system. The free vibration analysis of the linear system without

I "damping reduces to the solution of the linear eigenvalue problem

I. Ax = x 3x (1.1)

I. in which A and B are stiffness and mass matrices of order n, the number of

degrees of freedom of the structural system. A column vector x is an

eigenvector (or normal mode), and the scalar x the corresponding eigenvalue

(or the square of a natural frequency).

The matrices A and B are real and synmetric, and are usually banded and

sparse. If a consistent mass matrix is used, the matrices A and B have the

Le
* ,



2

same bandwidth [4,5]. If a lumped mass model of the system is used, B will

be diagonal. The matrix B is positive definite, but the matrix A may be

semidefinite. There are n sets of solutions of Eq. (1.1), that is, n eigen-

values and their corresponding eigenvectors.

Frequently, in practical eigenvalue problems, the order of A and B is

so high that it is impractical or very expensive to obtain the complete

eigensolution. On the other hand, to carry out a reasonably accurate

dynamic analysis of the structure, it is possible to consider only a partial

eigensolution. The partial solution of interest may consist of only few

lowest eigenvalues and their eigenvectors, or eigenvalues in the vicinity

of a given frequency and the corresponding eigenvectors. The method

described in this study is aimed at effective solution of this type of

problem rather than at a complete eigensolution.

1.2 Object and Scope

The object of this study is to present an iterative method which is

efficient and numerically stable for the accurate computation of limited

number of eigenvalues and the corresponding eigenvectors of linear eigenvalue

problems of large order.

The method developed remedies the major drawbacks of the inverse iter-

ation method with spectral shifting [13]: numerical instability due to

shifting and slow convergence when eigenvalues are equal or close in magni-

tude. The proposed method converges rapidly and is numerically stable for any

number of multiple or close eigenvalues and the corresponding etgenvectors.

4 '



Im

.3 3

The procedure for distinct eigenvalues is treated in Chapter 2, and a

modified procedure for multiple or close eigenvalues in Chapter 3. Selection
U.

of initial approximate eigenvalues and eigenvectors by the subspace iteration

.* method is described in Chapter 4. To show the efficiency of the proposed

. method, three sample problems are solved: vibration of a plane frame, of

a plate in bending, and of an arch. Comparisons are made in Chapter 5 with

a method which is generally regarded as very efficient, the subspace

iteration method.

1.3 Review of Solution Methods

- -Numerous techniques for the solution of eigenvalue problems have been

developed. These techniques can be divided into two classes - techniques

for approximate solution and techniques for "exact" solution.

The approximate solution techniques include well-known static conden-

- - sation [2,3,24,25,27,42], dynamic condensation [34], Rayleigh-Ritz analysis

[9,13,31,48], component mode analysis and related methods summarized by

Uhrig [50]. These methods are essentially techniques for reducing the size

of a system of equations. The reduction of a system of equations eventually

1leads to a loss in accuracy of a solution. However, the advantage of

lessened computational effort for a solution sometimes may compensate for

the loss in accuracy. Moreover, an approximate solution found by these methods

may serve as the starting solution for the exact methods, which will be

discussed next.

The exact methods are designed for the accurate computation of some

or all the eigenvalues and corresponding eigenvectors. These methods consistII
'K_ i - - -mr: . _ . _ ' _ '
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of vector iteration methods, transformation methods, the method based on

the Sturm-sequence property, polynomial iteration method, and minimization

methods. These methods are well described in Ref. 51. The methods differ

in the choice of which mathematical properties of an eigenvalue problem are

used. The vector iteration methods such as the classical vector iteration

(power method) and simultaneous vector iteration deal with the form of

equations Ax = x Bx. The transformation methods (LR, QR, Jacobi, Givens,

and Householder methods) are based on the mathematical property that the

eigenvalues of a system are invariant under similarity transformations. In

the polynomial iteration method, the roots of det (A - XB ) = 0 are found,

and minimization methods are based on the stationary property of the

Rayleigh quotient [43].

In vector iteration methods and minimization methods, both the eigen-

values and corresponding eigenvectors are found simultaneously, but in

other exadct methods, only eigenvalues are computed or the computed eigen-

vectors are, in general, not suitable for use in the final solutions. In

such methods, another method such as the vector iteration method with a

shift may be used for finding the eigenvector corresponding to a computed

eigenvalue.

For a limited number of eigenvalues and corresponding eigenvectors of

an eigenvalue problem of large order which we are concerned with in this

study, the above methods have been modified or combined to take advantage

of the useful characteristics of several of the methods. First, the

determinant search method [7,9,22,23] combines the methods based on the Sturm-

sequence property, polynomial iteration, and inverse iteration. In this

t.
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method, eigenvalues in a specified range are approximately isolated by using

the bisection method and the Sturm-sequence property and then located

accurately by the polynomial iteration method. The corresponding eigen-

vectors are computed by inverse iteration with a shift. By this method,

eigenvalues in any range and corresponding eigenvectors can be found.

However, it has the disadvantage that the matrix is factorized in each iter-

ation to locate the eigenvalues of interest.

Another method for the solution of large eigenvalue problems is the

so-called subspace iteration method [6,15,32,39,47], which is a combination

of the simultaneous iteration method and a Rayleigh-Ritz analysis. in this

method, several independent vectors are improved by vector inverse iteration,

and the best approximation to the eigenvectors are found in the subspace of

the iteration vectors by a Rayleigh-Ritz analysis. In this method, eigen-

values at the end of the spectrum and the corresponding eigenvectors converge

very rapidly. This method will be discussed further in Chapter 4.

The inverse iteration method with a shift is known to be extremely

efficient for improving approximate eigenvalues and eigenvectors. However,

as mentioned in the previous section, when the shift is very close to a true

eigenvalue, the method exhibits numerical instability, yielding unreliable

answers [13]. In addition, when the eigenvalues of interest are close to-

gether, their convergence is very slow. Robinson and Harris [44] developed

an efficient method to overcome the above difficulty for distinct eigenvalues

(: I by augmenting ihe equations used in the inverse iteration method by a side

S mequation. While this method extracts eigenvalues and eigenvectors simul-

taneously with a very high convergence rate, it has the disadvantage that the
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algorithm is inefficient for problems with multiple or close eigenvalues.

This method and some improvements on it will be discussed further in the

next chapter.

1.4 Notation

All symbols are defined in the text when they first appear.

With regard to matrices, vectors, elements of matrices or vectors, and

iteration steps, the following conventions are generally used:

(1) Matrices are denoted by uppercase letters, as A, B and X.

(2) A column vector is denoted by a lowercase letter with a

superior bar and a subscript, as aj, b. and x.
(3) Elements of a matrix or vector are denoted by a lowercase

letter with a double subscripts, as aij, bi. and xi.

(4) Iteration steps are denoted by a superscript, as X(k), i(k)

and x k
13
(5) k) (k)(5) Increments are denoted by the symbol A, as Ax. and Ax..

j ij

Some symbols are assigned more than one meaning. However, in the context

of their use there are no ambiguities.

A, aj, aij stiffness matrix, jth column vector of A, element

of A

A*(k) projection of A onto the subspace spanned by vectors

in y(k) A*(k) = y(k)T A y(k)

a = radius of circular arch

B, bj, b = mass matrix, j th column vector of B, element of B

B(k) projection of B onto the subspace spanned by vectors

in y(k), B
*(k)= Y(k)T B y(k)

tIj"
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c (k). E(k) Cik) = expansion matrix of X(k), jth column vector of

element of C(k), X
(k) = XC(k)

D = diagonal matrix, see Section 2.2

-Q De = plate bending stiffness, De = EH
3/12(l-u 2)

D, (. = matrix for finding close or multiple eigenvalues and

eigenvectors, jth column vector of D, see Eq. (3.24)

D(k), (T(k) = iteration matrix for D after k iterations, jth column

vector of D(k), see Eq. (3.23)

E = Young's modulus

E, ej, e = diagonal matrix, jth column vector of E, element of

E, see Eq. (A.7)

e., e diagonal matrix, jth column vector of E , element of

E*, E* =-E1

h thickness of plate

= number indicating rate of convergence of eigenvector,

see Eq. (2.13)

I =moment of inertia of cross-section

Is  = identity matrix of order s

i, j = indices of matrix elements

k = superscript indicating number of iterations

L lower triangular matrix

= Lagrangian, see Eq. (3.6)

ma, Mb = average half bandwidth of A, of B

Np, Nr, Ns = total number of operations required for finding

eigenpairs by the proposed method, by the Robinson-

Harris method, by the subspace-iteration method

W A"A6

I ia, *
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n = order of A and B

p = number of eigenpairs sought

q = number of iteration vectors by subspace iteration

method, q = max(2p, p+8)

-(k) residual vector of approximation to jth eigenpair

after k iterations

s = number of close and/or multiple eigenpairs sought

Tp, Tr, Ts  = number of iterations needed to find eigenpairs by

proposed method, by Robinson-Harris method, by

subspace iteration method

X, j, xi matrix of eigenvectors (modal matrix), ith eigen-

vector, element of X

X(k), i(k) , xlk) = approximation to X after k iterations, jth column

vector of X(k) , element of X(k)

y(k), _(k), (k) = matrix of iteration vectors improved from X(k) by

simultaneous iteration method, jth column vector of

y(k), element of y(k)

Z, z(k) = rotation matrix, approximation to Z after k iterations

y(k) = error in X(k) or (k)
J J "jj

= increment operator

6ij = Kronecker delta

e(k) = error In R(k) or -(k)

X M multiple eigenvalue

A, A = diagonal matrix of eigenvalues, jth eigenvalue,

A =diag(XI , X2, X ., I

~F

-.
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A(k) X(k) =approximation to A, to X., after k iterations

p= shift applied in vector iteration method

12ij vii' = element of D, of D (k)

p = mass density

= natural circular frequency, X w2
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2. DISTINCT ROOTS

2.1 General

In this chapter, a method for finding a simple eigenvalue and the

corresponding eigenvector will be presented. The method developed by

Robinson and Harris [44] is modified here to save overall computational

effort for finding an eigensolution. The Robinson-Harris method is an

application of the Newton-Raphson technique for improving the accuracy of

an approximate eigenvalue and the corresponding approximate eigenvector.

In the proposed mEthod, a modified form of the Newton-Raphson technique is

applied instead of the standard one used in the Robinson-Harris method.

In Section 2.2, the Robinson-Harris method will be discussed first;

then the proposed method will be presented. The convergence rate of the

proposed method and the number of operations per iteration will be given in

Section 2.3. The estimation of error in an approximate solution is found

in Section 2.4. A technique for the examination of the converged solution

to determine whether the eigenvalues and corresponding eigenvectors of

interest have been missed and a method for finding a missed solution will

be presented in Section 2.5.

2.2 The Iterative Scheme

Let us consider the following linear eigenvalue problem
&

A = AjB~ (j = 1, 2, . . , n) (2.1)

[
[I,
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where A and B are assumed to be given symmetric matrices of order n and B

is taken to be positive definite. The A. and i. are the jth eigenvalue and

the corresponding eigenvector.

Let us assume that an initial approximate solution of Eq. (2.1), Xj(0)

and i*(O) is available. Denote an approximate eigenvalue and the corre-

sponding eigenvector after k iterations by X and (k = 0, 1, .

Then, we have

Ai(k) _ (k) Bij(k) = rj(k) (2.2)

where j(k) is a residual vector.

The object is to remove the residual vector in Eq. (2.2). The Newton-

Raphson technique is applied for this purpose. Let the (k + 1)th approxi-

mation be defined by

(k+1) = X (k) + AX (k)

(k+1) = -j(k) + Aj (k) (2.3)

x x (23

where Axj (k) and Ax ) are small unknown incremental changes of X (k) and

xj ( k ) . Substituting xj(k+ ) and x j(k+) of Eq. (2.3) for Xi and x in

Eq. (2.1) and discarding a nonlinear term AX (k). BAx(k) as very small

compared with the other, linear, terms, we get

(A - A(k)B) Ax(k) - AA.(k) Bx(k ) = - .(k) (2.4)
j~ 3 3 3

where (k) is the residual vector defined in Eq. (2.2).

j.
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Note that in Eq. (2.4), there are n+1 scalar unknowns (k) and n

components of Axj(k)), but only n equations. Hence, it is required for the

solution of Eq. (2.4) that either the number of unknowns be reduced or one

equation added. Derwidue [16] and Rall [41] reduced the number of unknowns
by setting the nth component of the vector AR (k) or x (k+1) at a preassigned

value - zero or one. In these methods, it may happen that an unfortunate

choice of one component results in failure of the procedure.

Instead of reducing the number of unknowns, Robinson and Harris [44]

added an extra equation (side condition) to the system of Eq. (2.4), to

arrive at a set of n+1 equations in n+1 unknowns. This side condition is

(k) T  (k) (x BAR 0(2.5)

Equation (2.5) means that the incremental value Ax(k) is orthogonal to

the current approximate eigenvector Rj(k) with respect to the matrix B.

The side condition prevents unlimited change in the ij(k). The resulting

set of simultaneous linear equations may be written in matrix form as

A- (k)B _Bx (k) - (k) _ (k)

. .. (2.6)

-x. B 0 (k) 0
3 B

where the residual vector is given in Eq. (2.2). The coefficient

matrix for the incremental values is of order n+1 and symmetric. Moreover,

it is nonsingular if x is not multiple [44]. Equation (2.6) may be solved

for Axj(k) and Ax(k) by Gauss elimination, or by any other suitable
for 3te uia

I
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technique. Note that the submatrix in the coefficient matrix (A - (k)B)tehiqe Noeta3h

(k)is almost singular when A. is close to A. However, this does not cause

any difficulty in solving Eq. (2.6), since in the elimination process only

- - the last pivot element, in general, becomes very small. Thus, the inter-

change of columns and rows does not increase significantly the column height
-(k+l) -j(k+l)
of the factorized matrix. The improved values, A. and x , are

computed from Eq. (2.3). The procedure employing Eqs. (2.3) and (2.6) is

repeated until the errors in the A.(k) and Rj(k) are within allowable toler-

- ances. The method of estimating these errors will be discussed in Sec-

""n tion 2.4.

", The convergence of the above process for an eigenvalue and the corre-

sponding eigenvector has been shown to be better than second order; the

order has been found to be 2.41 [44]. However, the algorithm using Eq. (2.6)

requires a new triangularization in each iteration, since the values of the

* telements of the coefficient matrix are changed in each iteration as a result

of hagig fomA.(k) (k+1)
of changing from to j l The number of operations (multiplications

and divisions) required in such a triangularization is very large.

I To avoid the complete elimination procedure in each iteration, the

following equations instead of Eq. (2.6) are used in the proposed method.

[A - A- (k) Aj(k) - j(k)

• (2.7)

k • B 0 1 A (k) J
30

I
I
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where the residual vector r(k) is defined in Eq. (2.2). Equation (2.7)

was obtained by introducing Eq. (2.3) into Eq. (2.1) and discarding a small

linear term (x.(k+ ) - A i(O) BAj(k). Note that Eq. (2.7) differs from

Eq. (2.6) in such a way that the coefficient matrix in Eq. (2.6) has the

submatrix (A - xj(k)B), while the coefficient matrix in Eq. (2.7) has

(A - A O)B). The coefficient matrix in Eq. (2.7) is also symmetric, and

nonsingular if x. is not multiple. The nonsingularity of the coefficient

matrix will be proved in passing, in Appendix A.

From the form of the coefficient matrix, it can be seen that once the

matrix is decomposed into the form LDLT, where L is lower triangular and D

is diagonal, only a small number of additional operations is required

for the solution of Eq. (2.7) in the succeeding iterations, since only the

vector BRj(k) in the matrix is changed in each iteration. The proposed

method therefore considerably reduces the number of operations required in

each iteration. On the other hand, the method lowers the convergence rate

because of the neglect of the small linear term (x. (k+1) _ Aj (0) (BAxj(k))

which in turn increases the number of iterations for a solution. However,

the overall computational effort for a solution does decrease. It will be

seen in Chapter 5 that the proposed method is actually more efficient than

the Robinson-Harris method.

2.3 Convergence Rate and Operation Count

The efficiency of a numerical method such as the one proposed here can

be estimated given the convergence rate and the number of operations per

iteration required in the process. The convergence analysis, which is given

I.
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in Appendix B, will be summarized as follows. Let an approximate eigenvector

(k) be expanded in terms of the true eigenvectors xi, i.e.,
ma

n
j(k) = (k) (_ ci xi  (2.8)

i" i

where c.(k) is a coefficient of the vector x If yj(k) is the error in

- ).(k) and e (k) the error in x (k), they may be defined as

e.(k)
-i

(kX(k)yj(k) = (2.9)

n 1/2

7(c. (k)y
13

* " i=1

e.(k) = (2.10)j n

"(c (k¥

ii

L '=

where e.(k) is a measure of the angle between the vectors c (k) and c, and

_T =() ,c23 to 33k '' 2)a where Z (k)  (clj(k) (k) c (k) and-T (k)n ~ .nj adc. = (0,.. ,0, c.j . ,,...,)

The geometric interpretation of ej(k) is illustrated in Fig. 1.
With the above definitions, the errors in x (k+1) and - (k+1)

t written as (see Appendix B)

(k+1) = h2  (k) (2.11)
Yj

LW
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6 (k+l) = he (k) (2.12)

where

h m~a . -j _ CO)

= (aF < 1 (m = 1, 2, n) (2.13)

m j

Equations (2.11) and (2.12) show that the convergence character of both

eigenvalues and eigenvectors is linear. However, the eigenvalues converge

much more rapidly than the eigenvectors. Note also that the closer x. is

to another eigenvalue, the larger a is, yielding slow convergence. Hence,
the method is not suitable for finding close eigenvalues and the corre-

sponding eigenvectors.

Another important consideration which should be taken into account in

estimating the efficiency of numerical methods is the number of operations

per iteration. One operation is defined as one multiplication or division,

which almost always is followed by an addition or a subtraction. For the

expression of this number, let ma and mb be the half band-widths of the

matrices A and B, and let n be the order of A and B. Let Tp be the number

of iterations needed to find p eigenpairs by the proposed method and Tr by

the Robinson-Harris method. Then, the number of operations for p eigenpairs,

Np required by the proposed method is

S1n (m2 + 3m + 2m + 2) + Tpn (5m + 2m + 6)
p a a b p a mb+ (2.14)

* I

I1 • .....
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and by the Robinson-Harris method, Nr, is

N r = ITn (m2 + 13m a + 6mb + 12) (2.15)
r 2 r (a lm

It can be seen that the number of operations per iteration required by the

proposed method is much smaller than for the Robinson-Harris method. The

development of the above expressions is given in Table 1.

2.4 Errors in Approximate Eigensolutions

An important feature of an iterative method such as the proposed method

is some means of estimating the error in a computed solution. This permits

one to terminate the iteration process at the point where a sufficiently

accurate result has been obtained. It is important to have estimates in

terms of numbers available in the calculation, since it is impossible to

compare with the exact values.

Theerrr i (k) (k)" The error in x, can be estimated as follows: from

' -Eqs. (2.9) and (2.11)

w. = (k+l) + h2yj(k) j (2.16)

I Substituting Eq. (2.16) for Aj in Eq. (2.9) givesi3

1 yj(k) 1 . jj

(k)

(k+1) h2  (k) (k+l' (2.17)
L-hj X1 - ; / j
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Since 0 < h << 1 and 0 < yj(k) << 1, from Eq. (2.17)

yj, (k)
yj(k) = I- (k+)

A (k+1)- T(k)

1 (2.18)

The error in x (k), ej(k) , can be approximated by [6 (k) (k+l)

since e (k+l) < 6 (k) Furthermore, from Fig. 1,

n 1/2

Z (Acij(k2

j(k) _e(k+l)= _iji

(k (k) 1/2
[_ J J 

( (2.19)j(k)T  B (k)

Therefore,

() [ (k)T (k) 1/2

(k) Axk B AX(k).e~( !JT 
(2.20)

Lxi i

,t 
f
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(k)

The number of operations for the estimation ofis only about

n (2mb + 3), which is small compared with the number of operations per iter-

ation (see Section 2.3).

2.5 Treatment of Missed Eigensolutions

Some of the eigenvalues and corresponding eigenvectors of interest may

be missed when the initial approximations are not suitable. In order to

check whether this occurs, the Sturm-sequence property [9,31,39,48,51] may

be applied. The Sturm-sequence property is expressed as follows: if for

an approximate eigenvalue xj(O, (A - X j(OB) is decomposed into LOLT,

where L is a lower triangular matrix and D a diagonal one, then the number

of negative elements in D equals the number of eigenvalues smaller than

A (O). A computed eigenvalue can be checked using the above property with
!3

negligible extra computation, since the decomposition of the matrix

(A - O)B) has already been carried out during the procedure for the

solution of Eq. (2.7).

If some of the eigenvalues of interest are detected to be missing,

finding them consists of three steps: finding approximations to the mis;ed

eigenvalues, finding approximate eigenvectors corresponding to the miss'd

eigenvalues, and improving the approximate eigensolutions.

The approximate eigenvalues can be found by the repeated applications

of the Sturm-sequence calculation mentioned above and the method of bisection

[9,31,38,51], or by the polynomial iteration method [7,8,9,38,51], in which

the zeros of the characteristics polynomial p(X) = det(A - xB) are found

using variants of Newton's method.K
I

II
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In the second step, the approximation to the eigenvectors corresponding

to the missed eigenvalues is found. Frequently, finding the eigenvectors

corresponding to the missed eigenvalues is much more difficult than finding

the missed eigenvalues. However, subspace iterations with a shift [6,32],

which will be discussed in Chapter 4, or dynamic condensation [34,42,50]

may be used for this purpose.

Finally, the approximate eigenvalues and corresponding approximate

eigenvectors can be improved by the method of Section 2.2 if the eigen-

values are not multiple or close, or if they are, by the method of

Chapter 3.

*1

-L

'4 I I
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" 3. CLOSE OR MULTIPLE ROOTS

3.1 General

As mentioned earlier, the method presented in Chapter 2 fails or

exhibits slow convergence if it is applied to the solution for multiple or

close eigenvalues and for their corresponding eigenvectors. The failure or

slow convergence of the method is caused by impending singularity of the

coefficient matrix for the unknown incremental values as the successive

approximations approach the true eigenvalue and eigenvector.

The method presented in this chapter overcomes this shortcoming. To

accomplish this, all eigenvectors corresponding to multiple or close eigen-

values are found together. As in the method of Chapter 2, this method

yields the eigenvalues and corresponding eigenvectors at the same time.

The essence of the method consists first in finding the subspace

spanned by the eigenvectors corresponding to multiple or close eigenvalues.

The subspace is found using the Newton-Raphson technique in a way suggested

-.by the Robinson-Harris method [44]. If the eigenvalues of interest are

2 - -multiple, any set of independent vectors spanning subspace are the true

eigenvectors, but if the eigenvalues are merely close together, the

vectors must be rotated in the subspace to find the true eigenvectors. The

eigenvalues are obtained as a by-product of the process of finding the sub-

-. space and any subsequent rotation. In this method, any number of close

* eigenvalues or an eigenvalue of any multiplicity can be found together with

* - the corresponding eigenvectors.

4.

* i
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The theoretical background of the method is presented in Section 3.2

The iterative scheme for finding the subspace of the eigenvectors corre-

sponding to multiple or close eigenvalues is given in Section 3.3. The

additional treatment required for close eigenvalues and corresponding

eigenvectors is the subject of Section 3.4. The convergence rate and the

number of operations per iteration are given in Section 3.5.

3.2 Theoretical Background

Let us consider the system treated in Chapter 2, i.e.,

Ax. = i Bx i (i = 1, 2, . . , , n) (3.1)

where A and B are symmetric matrices of order n, and B is positive definite.

The i are etgenvectors, and the xi eigenvalues in the order x 1" X21 .. fxn

Let a set S consist of s integers pji (j = 1, 2, . , s), that is,

S = [Pl' P2* ps] where 1 < pj< n. The s-dimensional subspace spanned by

the eigenvectors x. (jeS) where none of the corresponding eigenvalues

X (jeS) are close or equal to eigenvalues x i (iS) is denoted by R. Let

us take s vectors yj (jeS) which are orthonormal with respect to B and are

in the neighborhood of the subspace R. This means that if the vector yj is

expanded in a series of true eigenvectors xi (i = 1, 2,... ,n)

n

= L c xj (jES) (3.2)
4 1=1

f
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then, the following relations must be met:

-- << CZ (jes) (3.3)
gm

V~S ic

Hence, a vector yj(jcS) needs not be close to one of the Rj(jCS).

With the above definitions, the subspace R of the eigenvectors x.(jES)

is characterized by the following constrained stationary-value problem: find

the stationary values of

n
S-T Ay (3.4)

jeS

* - subject to

TBy 6.. (, jes) (3.5)• i lJ '

* where 6ij is the Kronecker delta, i.e., 6ij = 1 for i = j, and 6ij= 0 for

* .i j j. The function w could be regarded as a sum of Rayleigh quotients of

the vectors yj, since by Eq. (3.5) the denominators of the Rayleigh quotients

are equal to unity. The important result that the stationary property

characterizes the subspace R is proved as Theorem 1 of Appendix C.

The stationary-value problem may be treated by the method of Lagrange

multipliers. Introducing the undetermined multipliers oij (i,jES) and letting

1 =ij 1 ji (see Eq. (3.5)), we have the Lagrangian

T -.
L = 1 - '. j ij) (3.6)

ie . JE (-,T y
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The problem of Eqs. (3.4) and (3.5) is equivalent to that of solving the

unconstrained stationary-value problem for the Lagrangian L. The problem

is solved setting the first partial derivatives of L with respect to the

unknowns yj and vij equal to zero, i.e.,

At._ =0 ; Ay ij B~i (jES) (3.7)
ayj icS

aL _0 ; TBY (i, jeS) (3.8) I

Introducing the following notation

Pi P2  PS[YSl PP2 "" Y"Ps

i j. ., ) = P P2" " Ps

D = (dP, dp,... ,dp) (3.g)

we can write Eq. (3.7) in matrix form as! " t
Aj -BYaj (j P* P2 IPs...SpS) (3.10)

or collectively -,

AY = BYD (3.11)
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In the same way, Eq. (3.8) can be written as

YTBY = Is  (3.12)

where Is is the unit matrix of order s. Hence, the subspace R of the

desired eigenvectors can be found by solving Eqs. (3.11) and (3.12). Note

that Eqs. (3.11) and (3.12) are nonlinear in D and Y and that there are

s (s + 1)/2 scalar unknown elements in D, since D is symmetric, and

s (s + 1)/2 independent equations in Eq. (3.12). In the next section, the

solution of Eqs. (3.11) and (3.12) in the special case that (jeS) are all

multiple or close eigenvalues will be discussed.

3.3 The Iterative Scheme

In this section, the application of the Newton-Raphson technique to

-. the solution of Eqs. (3.11) and (3.12) for multiple or close eigenvalues

and their corresponding eigenvectors will be presented. To simplify the

-- notation in this discussion, we take the set S = [1,2,...,s], that is, the

s lowest eigenvalues are close together, or the multiplicity of the lowest

eigenvalue is s. It should be emphasized that this is not restrictive, and

the procedure is perfectly applicable to multiple or close eigenvalues in

any range.

Assume that the initial values for D and Y, D( ) and Y(O) are available

I (the solution for the initial values will be discussed in Chapter 4).

Furthermore, we assume that the initial vectors in Y(O) are in the neighbor-

*,Im hood of the subspace of the eigenvectors X = [XlX2,...,Xs] and that they

I |
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have been orthonormalized with respect to the matrix B, i.e., y(O)By(O) = s

With the above assumptions, we now apply the Newton-Raphson technique to the

solution of Eqs. (3.11) and (3.12). For the general kth iteration step, let

aj(k+1) = a.(k) + Aa.(k)

(k+1) +(k) (k)
y i y. + Ay.3.3

where Aaj (k ) and Ayj (k) are unknown incremental values for d.(k) and yj(k)

Introducing Eq. (3.13) into Eqs. (3.10) and (3.12) and neglecting the

nonlinear terms, we obtain the linear simultaneous equations for Ad.(k) and

A (k).

AA.(k)- By(k)Ad.(k) = A- (k) + By(k)dj(k) + BAy(k)a (k) (3.14)

Y(k)TBY (k) + 2Y(k)T BAY(k) Is  (3.15)

By Theorem 3 of Appendix C, if the x. (j = 1,2,...,s) are multiple or

close eigenvalues, the off-diagonal elements of D are zero or very small

compared with its diagonal ones, thus the last term of Eq. (3.14) may be
-(k) yedn

approximated by pjjB Ayk yielding

(A - Vjj(k)B) Ay.(k) - BY(k)Aa (k) = _ A (k) + BY(k)d (k) (3.16)

Let us take

Y(k)TBY(k) = s  (3.17)

L i m
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Then, Eq. (3.15) becomes

y(k)TBAyj (k) = 0 (3.18)

* * which is the condition that the incremental vectors be orthogonal to the

current vectors with respect to B. If the computational scheme is slightly

altered so that the latest yi(k) is used at all times, the orthogonality

condition is satisfied automatically provided that the initial vectors yi(0 )

are orthogonal. What this means is that we use y (k) (i = 1,2,...,j - 1)
(k+11

for the computation of -j(k+l)

The final equations to solve for Ad. and Ay are Eqs. (3.16)
and (3.18) along with the orthonormality condition, Eq. (3.17). These

equations can be written in matrix form as

A- (k)B By(k) - (k) _ (k)

3A - ,jj - Ayr

-. .(3.19)

()T -(k)Y(k)B 0 Ad0

*. where

(k) = A (k) - By(k) a (k) (3.20)

*..
(k(k)

The coefficient matrix for the unknowns, a.(k) and Y(k is symmetric.

Furthermore, it is nonsingular, as is shown in Appendix A. Thus, Eq. (3.19)

a i

' V ' |
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can be solved for Aa.(k) and Ay (k), yielding improved values, a.(k+l) and

-j(k+l) from Eq. (3.13).

The algorithm using Eq. (3.19) requires a new triangularization in

each iteration, since the coefficient matrix is changed in each iteration.

It therefore seems useful, as in Chapter 2, to substitute (A - ijj(O)B) for

(A -j(k)B) in Eq. (3.19) in order to save computational effort in the

solution. That is, the basic equations for the increments are taken as

A - ujj( 0)B - (k) - (k) . (k)
A -l13 BY Ayj

.. = (3.21)

-Y k)TB 0 Ad(k) 0

where the residual vector rj(k) is defined as in Eq. (3.20). The coefficient

matrix in Eq. (3.21) is also symmetric and nonsingular (Appendix A). The

equation (3.21) was obtained discarding a small linear term (Pjjk -

jj ))B (k) of Eq. (3.19). The procedure using Eq. (3.21) requires only

partial triangularizations in each iteration, since only the vectors in

y(k) are changed, reducing the number of operations per iteration. The pro-

cedure depends, for its convenience, on the decoupling of the Ayj (k ) for the

s vectors (k) (i=1,2,...,s). The decoupling was possible only because

the small linear terms

nn ij ( k )  By ( k )

i=1
i j



29

(see Eq. (3.14)) could be dropped for A. (j=1, 2, . , s) all close

together. Experience with Eq. (3.21) for x (j=l, 2, . , s) which are not

close together indicates that satisfactory results cannot be obtained.

Note that if s = 1, Eqs. (3.19) and (3.21) are equivalent to the

equations used for distinct eigenvalues and corresponding eigenvectors:

Eq. (3.19) becomes Eq. (2.6), the equations used in the Robinson-Harris

method, and Eq. (3.21) becomes Eq. (2.7), used in the proposed method.

With sufficient large k, the incremental values A and Ayj- (k)

will vanish. Then, from Eq. (3.21)

lim r.(k) lim (Ayj(k) - BY(k) j(k)) = 0 (3.22)k->cJ k-*W

Letting

lim d.(k)dj = -o J

j (k)
- = limy (3.23)

we write Eqs. (3.22) and (3.17) as

AY : BYD (3.24)

6m

YTBY = 1 (3.25)

where Y = (yiy 2,... ,ys), and D = (dl,d 2 ,...,). By Theorem 3 of Appendix C,

if the elgenvalues x (j=1,2,... s) are multiple, the values of the off-

diagonal elements of D are all zero, and its diagonal elements have an equal

I
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value which is the desired multiple eigenvalue. Moreover, the vectors in

Y are the corresponding eigenvectors. However, if the eigenvalues are

close but not equal, additional operations are required to find the desired

eigenvalues and eigenvectors. These additional operations are the subject

of the next section.

3.4 Treatment of Close Roots

Once the converged solution D and Y has been found by the algorithm

described in the previous section, but the values of the off-diagonal

elements of D are not zero, the vectors in Y are rotated in the subspace

of Y to find the true eigenvectors. A rotation matrix is found by solving

a small eigenvalue problem. Furthermore, the eigenvalues of the small

eigenvalue problem are the desired eigenvalues. The derivation of the

small eigenvalue problem is as follows. The system with the s eigenvectors

in X = [Xl'X 2 "'"Xs] and corresponding eigenvalues in A = diag (X1,X2 ,...,X)

may be written as

AX = BXA (3.26)

where A and B are symmetric matrices of order n. Now, let

X = YZ (3.27)

where Z is the unknown rotation matrix of order s. Introducing Eq. (3.27)

into Eq. (3.26), we get

AYZ = BYZA (3.28)

4-

9 . .4
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±Postmultiplying Eq. (3.24) by the matrix Z yields

7r AYZ = BYDZ (3.29)

Premultiplying Eqs. (3.28) and (3.29) and using Y = Is of Eq. (3.25), we

obtain the special eigenvalue problem of order s

DZ = ZA (3.30)

* owhere D is the converged solution found by the algorithm of the previous

section. The matrix D is symmetric (see Eq. (3.24)) and of order s, the

number of close eigenvalues, which is usually small. The absolute values

of the off-diagonal elements of D are small compared with those of its

diagonal elements (see Appendix C). The eigenvalue problem, Eq. (3.30) can

be easily solved by any suitable technique such as Jacobi's method [31,51],

yielding the desired eigenvalues in A (15 . . . s ) and the matrix Z,

, - which in turn gives the eigenvectors X by Eq. (3.27). The number of oper-

ations required for the solution of Eq. (3.30) is very small compared with

that of Eq. (3.21), since s is small.

2j 3.5 Convergence Rate and Operation Count

-"In this section, the convergence rates of a multiple eigenvalue and

the corresponding eigenvectors found in Appendix B will be summarized. For

convenience, we assume that the lowest eigenvalues are multiple, i.e.,

= = = = Let the approximate eigenvectors y (k) 0j2,...,s)

be expanded in terms of the eigenvectors (i= 1, 2, , n), i.e.,

T1
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n

y(k) cii xi j 1 1, 2, ... , s (3.31)

(=1

where cijk) is a scalar representing the components of the eigenvector xi
(k) (k) (k) t (k)on jik. If Yj denotes the error in ajj nd the error in

then they may be defined by

(k) - (j (3.32)

(k) 7 z. (ci (k (3.33)i=S+l J/

(k+l) an j(k+l)mabewitna
As shown in Appendix B, the error in ajjnd may be written as

(k+1) = h2  (k) (334)
Y3 h 3j(.4

(k+) = he~(k) (3.35)

where

* - (0)
h max A j. i = s+], s+2, n; (3.35)

i jj j=1, 2, ... ,s

1 jj

S .
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t can be seen from Eqs. (3.34) and (3.35) that the eigenvalues and the

corresponding eigenvectors converge linearly. However, the eigenvalues

converge much more rapidly than the eigenvectors.

The number of operations N required for finding multiple or close
p

eigenvalues and the corresponding eigenvectors is calculated in Table 1.

This number is

= pn (m +3m a 2mb+ 2 ) + T n [(s+4)ma+2mb+ (S2+7s+4)] (3.37)

Np 2 a a bp a 2 b+(s ls4) 3.7

where s is the multiplicity of an eigenvalue or the number of close eigen-

values, and T is the total number of iterations required for a solution.

It can be seen that if s = 1, the number of operations is equal to the number

of operations required for finding a simple eigenvalue and the corresponding

eigenvector (see Eq. (2.14)).

1

I'
I

I,
I
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4. APPROXIMATE STARTING EIGENSOLUTION

4.1 General

The iterative methods described in the previous chapters begin with an

approximate starting eigensolution. In this chapter, a procedure to find

the starting solution is presented. The approximate starting solution of

an eigenvalue problem is often available either as the final answer in some

approximate methods or as an intermediate result in other iterative methods.

Numerous methods for approximate solutions have been developed. These

include static or dynamic condensation [2,3,25,28,34,42], Rayleigh-Ritz

analysis [48,51], component mode analysis [9,51], and related methods sum-

marized by Uhrig [50]. In all these methods, the approximate solution is

found in a single step, and not in an iterative process. Hence, automatic

*improvement of the solution is not built into the procedure. Moreover, the

success of the methods depends, to a great extent, on the engineer's judg-

ment, which is difficult to incorporate into an automatic computer program.

Another possible way for finding the approximate solution is to take

the intermediate results from other iterative methods such as a method

combining the Gram-Schmidt orthogonalization process [51] with simultaneous

iteration method or combining Rayleigh-Ritz analysis [6,9,11,29,32,49] with

simultaneous iteration method. The latter combined method is sometimes

called the "subspace iteration method" [6,9]. The subspace iteration method

is used here to find approximate starting solutions because it has a better

convergence rate than most others. The method itself turns out to require

selecting starting vectors. However, a scheme to find starting vectors for

,I i
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the subspace iteration method has been well established and is fairly routine

(see Section 4.2.2). In the next section, the subspace iteration method will

be discussed.

4.2 Subspace Iteration Method

4.2.1 The Iterative Scheme

The subspace iteration method is a repeated application of the

classical vector iteration method (power method) and Rayleigh-Ritz analysis.

Suppose that the p smallest eigenvalues x i (i = 1,2,...,p) and corresponding

eigenvectors x i are required and that we have p initial independent vectors
i(° (i = 1.2,... ,p) spanning a p-dimensional subspace in the neighborhood

of the subspace of the desired eigenvectors.

If the approximate eigenvectors and corresponding eigenvalues after k

iterations are denoted by xi(k) and xi(k), X(k) = [x1(k), x2 (k)... xp (k)

and D(k ) = diag (x1 
(k), X2 ,...,p(k)), the subspace iteration method for

the kth iteration may be described as follows:

(i) Find the improved eigenvectors y(k) = l (k) 2 (k)...' p (k)]

by. the simultaneous inverse iteration method;

AY(k) = BX(kl) (4.1)

(ii) Compute the projections of the operators A and B onto the

subspace spanned by the p vectors in Y(k);

*(k) = Y(k) Ay(k)
A Y

*(k) = (k) T BY)
B (k) (4.2)
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*(k) ad*(k)where A and B are pxp symmetric matrices.

(iii) Solve the eigenvalue problem of reduced order p for the

eigenvalues in D(k) = diag (A1(k), A2(k) , (k) and the

eigenvectors in Z(k) = 2 (k), p2(k),., p(k);

Z(k) z(k) = *(k) z(k) D(k) (43)

(iv) Find an improved approximation to the eigenvectors;

x(k) = y(k) z(k) (4.4)

Then,

lim D(k) = diag (xl
k-- p

lim X(k) : I X2  (4.5)k-w 21' ,.,p]

Note that Eqs. (4.2) through (4.4) represent a Rayleigh-Ritz analysis with

the vectors in y(k) as the Ritz basis vectors, which results in X(k), the

best approximation to the true eigenvectors in the subspace of y(k).

More rapid convergence can be obtained by taking more iteration vectors

than the number of eigensolutions sought. However, the more starting

vectors are taken, the more computational effort is required per iteration.

As an optimal number of iteration vectors, q, q = min (2p, p + 8) has been

suggested [6,9].

i
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To find eigenvalues within a given range a < v < b and the correspond-

ing eigenvectors, we may use, instead of Eq. (4.1), the inverse iteration

with a shift [32]:

(A - vB) Y(k) BX(k-1) (4.6)

where P is a shift and can be taken as (a + b)/2. It is clear from Eq. (4.6)

-"that the eigenvectors corresponding to the eigenvalues in the vicinity of a

shift P will converge rapidly. However, the convergence of other eigen-

vectors may be slower than when the shift is not applied, since as a result

of the application of the shift, the absolute values of some shifted eigen-

values may become closer.

4.2.2 Starting Vectors

The number of iterations required for convergence depends on how

"- close the subspace spanned by the starting vectors is to the exact subspace.

If approximations to the required eigenvectors are already available, e.g.,

from a previous solution to a similar problem, these may be used as a set

of starting vectors. If not, we may use one of the schemes for generating

I starting vectors which have been proposed as effective [6,11,32,47].

The scheme for establishing the starting vectors proposed by Bathe and

Wilson [6,9] is used here because of its simplicity and effectiveness. The
I of BX(0)inE

scheme may be described as follows. The first column of BX in Eq. (4.1)

is formed simply from the diagonal elements of B. That is, if BX(0) is

m denoted by C,

cil = bii (i = 1,2,...,n) (4.7)

I
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This assures that all mass degrees-of-freedom are excited in order not to

miss a mode [6,9]. The next (q-1) columns in C may each have all zeros

except for a certain coordinate where a one is placed. These coordinates

are found in the following way. First, compute the ratios aii/b ii

(i = 1,2,...,n) and take the (q-1) sj s (j = 1,2,...,q-1) such that the

absolute values of the ratios a ii/bii for i (i = s I , s2,... ,Sq 1 ) are

smallest over all i. Then,

ci, j-1 = 1 for i= s (i - 1,2,...,n) .

= 0 for i sj (j = 1,2,...,q-1) (4.8)

If the absolute values of the ratios are close or equal, then it was recom-

mended [6,9] that the s s (j = 1,2,...,q-1) be chosen so that they are well

spaced.

4.2.3 Convergence Rate, Operation Count, and Estimation of Errors

With an adequate choice of the starting vectors, the subspace

iteration method gives good approximations to the exact eigenvalues and

2 eigenvectors even after only a few iterations. However, the subsequent

convergence is only linear with the rates of convergence equal to

Ai/Aq+1 (i = 1,2,...,p) for the ith eigenvector and (xi/Aq+1) for the

corresponding eigenvalue. These ratios indicate that for the higher eigen- .

value convergence is slower. Hence, the convergence of the pth mode controls -

the termination of the iteration process. "

[I
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One of the most important indicators of the effectiveness of numerical

- methods is the total number of operations required for finding a solution,

which depends on both the rate of convergence and the number of operations

per iteration. This number for the subspace iteration method, N s  (seeI
Table 1) may be expressed by

""
Ns =Tqn (2m + 4m + 2q + 4) + n (m + 3m + b+)

where ma and mb are the half band-widths of A and B, and Ts is the total

number of iterations required for the solution.

The total number of iterations T5, depends on the rate of convergence

and tolerances of the errors in approximate eigenvalues and eigenvectors.

Bathe and Wilson [6,9] suggested use of the following formula for the esti-

mation of errors in the ith eigenpair at the kth iteration:

"- (k)

-- k) (4.10)

aAx

(where rik) = (A - xi(k)B) xi(k)
i i

The error estimated by Eq. (4.10) is a function of both the approximate

I eigenvalues and elgenvectors. However, it may be more reasonable to estimate

the errors in approximate eigenvalues and eigenvectors using separate formulas

as olow: et (k) (k)as follows: let yi and ei be the errors in the ith approximate eigen-

(k)
value and eigenvector. Then yi may be estimated by

'aa

1" (k) x(k+l) -l(k)

Yi (k (k l) (i = 1,2, ... ,S ) (4.11)
*1l

'- . ,,"Lr', ! .
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For the estimate of i(k), we find the incremental vectors Ax (k) from the

relations

i -(k+1) = aii (k)x 1(k) + xi(k)

1i =a~ i 1  1

-iB Ai(k) = 0 (4.12)

Then,

6i(k) Axi (k)T 12 2 x (k)Tx ( k ) 1/ 2

1 1 AiB x ( ii) 1 Bx '' (4.13)

If some of the approximate eigenvalues xi  = P1  P2 "'"...Ps) are equal or

very close, we may then compute Axi(k) from the relations

- (k+1) PS (k)- (k) (x : (. x i + Ai(k)

i=p1

ij(k) TB -(k) = 0 ;(i =p, . ps

e(k) 1 (k)T xi(k) 1Z .2 (k)- (k)T (k)l1/2
i Bxij x Bx. ) (4.14)

lj=p 1

For the purpose of comparison of the proposed methods of Chapters 2 and 3

with the subspace iteration method, the errors were computed using Eqs.

(4.11) to (4.14).

*Ji* v
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•0 ,4.3 Starting Solution for the Proposed Method

The intermediate results from the subspace iteration are used as the.(

starting solutions for the proposed method. During the subspace iterations,

the errors in approximate eigenvalues and corresponding eigenvectors can be

estimated by the scheme described in Section 4.2.3. Furthermore, these

errors can be used for estimating the number of iterations or the number of

operations required for the solution by both the subspace iteration method

and the proposed method. Hence, it is possible to estimate the optimal

number of iterations to be carried out by the subspace iteration method.

- This optimal number of iterations is usually one or two.

Let x. and x; (i = 1,2,...,p) be the intermediate solutions from the
I 1

subspace iteration method after the optimal number of iterations. Then, if

the X are well separated, xi and xi can be taken as the starting solutions

,, for the method of Chapter 2, xi(0) and xi(. However, if some of them,

e.g., * (i = PP 2 ...,p) are equal or very close, x* and x. are taken as

the starting solution for the method of Chapter 3 as

(0) •

Ii
(0)-*

1Aj(0) =0 for i 'j(ij=P 1,p2 9... sp5  (4.15)

I

I
I
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It should be noted that from Eqs. (4.3) and (4.4), the iteration

vectors in the subspace iteration method are always orthogonalized with

respect to B. Therefore, orthogonalization is not required for the first

iteration of the proposed method.

II
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5. NUMERICAL RESULTS AND COMPARISONS

5.1 General

The relative efficiency of the methods developed in this study is

* •illustrated in this chapter by the numerical results of the free vibration

analyses of the following example problems:

(a) Ten-Story, Ten-Bay Plane Frame

(b) Two-Hinged Circular Arch

(c) Simply Supported Plate.

The problems were formulated using a stiffness method for the plane frame

problem, a finite difference method for the arch problem, and a finite element

method for the plate problem. No attempt has been made to present the

solutions of eigenvalue problems of very large order, although the proposed

method is developed for them. However, some trends can be inferred from the

example problems presented here.

The first two problems, with distinct eignevalues, were solved by the

method discussed in Chapter 2 and the third one, with multiple or close

eigenvalues, by the method of Chapter 3. The above problems were also solved

using the Robinson-Harris method [44] and the subspace iteration method

discussed in Chapter 4. The results are summarized in Tables 2 through 5. The

numerical results given here are shown to be consistent with the convergence

estimates of Appendix B.

For each method, the total number of operations required for finding the

desired eigenvalues and eigenvectors to the same accuracy was found. These

are presented and compared in Table 6. Although a tolerance of lO 4 on the

eigenvalues and eigenvectors should be sufficient for normal requirements, it
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was taken as 10- 6 for the purpose of comparisons of the convergence character-

istics of the methods. ---

The numerical computations of the above problems were performed on the

CDC CYBER 175 system of the Digital Computer Laboratory of the University of

Illinois, Urbana, Illinois.

5.2 Plane Frame

The ten-story, ten-bay plane shown in Fig. 2 was taken as an example

problem in order to test the method of Chapter 2'for problems with distinct

eigenvalues. The problem was formulated by a stiffness method in which the

axial deformations of the members are considered, but the shear deformations

neglected [40]. The frame with three displacements per joint has a total of

330 degrees of freedom. The mass matrix is the consistent mass matrix [4,5]

with a maximum half-bandwidth of 35, equal to that of the stiffness matrix.

The four smallest eigenvalues and their corresponding eigenvectors

were computed by the proposed method, by the Robinson-Harris method, and by

the subspace iteration method. The results are given in Table 2. For the

subspace iteration method, ten starting vectors were formed by the technique

suggested by Bathe and Wilson (see Section 4.2.2). The starting approximate

eigenvalues and eigenvectors for the proposed method and for the Robinson-

Harris method were established by performing two cycles of subspace iteration.

Table 2 shows that even the eigenvalues calculated by two subspace iterations

are already accurate to three figures. However, the eigenvectors are accurate

to only one or two figures. In addition, the convergence of eigenvectors by

the subspace iteration method is so slow, as discussed in Section 4.2.3, that

12 iterations were required for the convergence of both eigenvalues and eigen-

4-
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vectors to the indicated tolerance. The proposed method and the Robinson-

Harris method required only two iterations for the convergence of eigenpairs

except for that of the fourth mode, which required four iterations by the

proposed method and three iterations by the Robinson-Harris method.

The total number of operations to solve for all the desired eigenpairs by

the proposed method is 3.50x10 6 ; by the Robinson-Harris method, 4.57x10 6' and

by the subspace iteration method, 9.27x106. Therefore, the Robinson-Harris

method required 1.31 times as many operations as the proposed method did, and

the subspace iteration method required 2.78 times as many operations, as shown

in Table 6.

5.3 Arch

A uniform 90 degree circular arch simply supported at both ends was

analyzed for in-plane vibration behavior. The arch has the radius a and the

thickness h, and the ratio a/h = 20. Melin and Robinson [36] investigated the

free vibration behavior of such an arch as a part of a study of vibrations of

a simply supported cylindrical shell using a finite difference method. The

arch was divided into 12 uniform segments giving 22 degrees of freedom. The

maximum half-bandwidth of the stiffness matrix is four and the mass matrix is

a unit diagonal matrix.

The problem was analyzed for the three smallest eigenvalues and their

eigenvectors by the proposed method, by the Robinson-Harris method, and by the

subspace iteration method. The results are summarized in Table 3. Five radial

displacements were taken as master displacements for the iteration vectors of

the subspace iteration method. Starting approximate eigenpairs for the proposed

method and the Robinson-Harris method were established by carrying out just

one cycle of the subspace iteration.

/
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The comparison of the total number of operations for each method is

given in Table 6. The proposed method needed 8.87xi03 operations, the

Robinson-Harris method 9.77x.03 operations, and the subspace iteration method

1.76x104 operations. Hence, the ratio of the total number of operations by

the Robinson-Harris method to that by the proposed method is 1.10, and this

ratio for the subspace iteration method is 1.98.

5.4 Plate Bending

A plate simply supported on all edges was analyzed in order to test the

method presented in Chapter 3, for the solution of eigenvalue problems with

multiple or close eigenvalues. The plate has the lengths a and b, and the

theckness h. Two special cases were considered; an aspect ratio b/a of 1.00

and b/a equal to 1.01. The first case gives multiple roots, while the second

one gives close roots. The problem was formulated by a finite element method,

in which the plate was divided into 16 elements. Each unrestarined node has

a deflection and two rotational displacements, giving a total of 39 degrees of

freedom. The mass matrix is the consistent mass matrix [4,5] with a maximum

half-bandwidth of 16, equal to that of the stiffness matrix.

The four smallest eigenvalues and corresponding eigenvectors were computed

for both cases by the proposed method and by the subspace iteration method.

The results are summarized in Tables 4 and 5. the deflection at each node was

taken as the master degrees of freedom, giving nine iteration vectors for the

subspace iteration method. Only one cycle of subspace iteration was performed

for the proposed method. The multiple eigenvalues of the square plate and the

close eigenvalues of the rectangular plate were isolated by the method

discussed in Chapter 3.
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The total number of operations by the proposed method for both cases is

1.27xlO 5 and by the subspace iteration method, 2.20xl0 5, as shown in Table 6.

Hence, the subspace iteration method needed 1.73 times as many operations as

the proposed method did.

5.5 Comparison between the Theoretical Convergence Rates and Numerical

Results

It was shown in the previous chapters that in the proposed method, the

convergence of eigenvalues is much faster than that of eigenvectors. Hence,

the convergence of the eigenvectors governs the termination of process, when

the tolerances on the eigenvalues and eigenvectors are same. Comparison

between the theoretical convergence rates and numerical results was, therefore,

carried out only for the eigenvectors. Comparisons between the proposed

method and subspace iteration method are given in Tables 7, 8, and 9.

The numerical convergence rates were computed by , k+l)/6 k), where

elk) is the error on the ith approximate eigenvector at the kth iteration.

These errors are given in Tables 2 through 5, showing that the numerical

convergence rates for the proposed method and the subspace iteration method

increase monotonically to approach the theoretical convergence rates as the

number of iterations increases. A typical example for this is the convergence

rates of the fourth eigenvector of the frame problem, as shown in Table 7.

The number of iterations for this mode is large enough to provide a good

comparison between the theoretical and numerical convergence rates.

Tables 7, 8, and 9 show that in the proposed method, eigenpairs converge

much faster than in the subspace iteration method. Note also that in Table 9,

the numerical convergence rates for the proposed method are almost same as

/hi N inm-lnnnl-nnnn
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those rates for the problem with double roots. Hence, the expressions for the

theoretical convergence rates for multiple eigenvalues also seem applicable to

the case of close eigenvalues.

II
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6. SUMMARY AND CONCLUSIONS

6.1 Summary of the Proposed Method

Two iterative procedures for the solution of linear eigenvalue problems

for systems with a finite number of degrees of freedom were discussed in

Chapters 2 and 3. Chapter 2 developed a procedure for finding distinct

eigenvalues and the corresponding eigenvectors, and Chapter 3 dealt with

multiple or close eigenvalues and the corresponding eigenvectors.

For distinct eigenvalues and the corresponding eigenvectors, the Robinson-

Harris method [44] was modified to save overall computational effort by the

use of a "modified" form of the Newton-Raphson technique. The modified method

reduces both the number of operations per iteration and the convergence rates.

However, the reduction of the number of operations generally compensates for

the disadvantage of the decrease of the convergence rate, reducing the total

number of operations.

The procedure in Chapter 2 for finding a distinct eigenvalue and the

corresponding eigenvector fails if the eigenvalue is one of multiple or close

eigenvalues, because the matrix involved in the computation become ill-condi-

tioned. This difficulty has been overcome by the new method of Chapter 3. In

this mehtod, all eigenvalues close to an eigenvalue or a multiple eigenvalue

and the corresponding eigenvectors are found in a group. In other words, a

subspace spanned by the approximate eigenvectors is projected by iterations

onto the subspace of the exact eigenvectors. If the eigenvalues are multiple,

the vectors spanning the subspace are exact eigenvectors. However, if the

eigenvalues are close, the exact eigenvectors are found by a simple rotation

of the vectors in the subspace. The rotation matrix is found from a special

WE 7___
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eigenvalue problem of small order s, the number of the close eigenvalues.

The eigenvalues of the small eigenvalue problem are exact eigenvalues of the

original system.

The above procedures of the successive approximations require initial

approximations to the eigenvalues and eigenvectors. These are available

either as the final solution in some approximate methods such as static or

dynamic condensation or as an intermediate result in an iterative method as

the subspace iteration method described in Chapter 4.

6.2 ConclusionsII
The method presented in this study is very efficient for finding a limited

number of soltutions of eigenvalue problems of large order arising from the

linear dynamic analysis of structures. The features of the method are summarized

as follows.

(a) The method ha- very high convergence rates for eigenvalues

and eigenvectors. The method is more economical than the

subspace iteration method, the advantage being greater

in larger problems. For comparable accuracy, a ten-story

ten-bay frame required only 36% of the number of operations

need in applying subspace iterations.

(b) A transformation to the special eigenvalue problem is not

required. Thus, the characteristics of the given matrices

such as the sparseness, bandness, and symmetry are preserved,

mi;aimizing the storage requirements and the number of

operations.

'1
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(c) Any number of multiple or close eigenvalues and their

eigenvectors can be found. The existence of the multiple

or close eigenvalues can be detected during the iterations

by the method of Chapter 2.

(d) The eigenvalues in any range of interest and their

eigenvectors can be found, if approximations to the

solution are known.

(e) The solution can be checked to determine if some eigenvalues

and corresponding eigenvectors of interest have been

missed, without extra operations.

6.3 Recommendations for Further Study

Several possible areas of further study to improve the proposed method

may be suggested.

(a) The convergence rate may be improved by other modifica-

tions of the successive approximation method used for

the proposed method.

S. (b) Further improvements may be possible for the method of

finding an initial approximation to the eigensolution,

and for isolating the eigenvalues and their eigenvectors

"° which may be missed by the proposed method.

(c) The proposed method may be applied to other practical

problems of our interest such as a stability analysis of

structures.

(d) The proposed method could be easily extended to the contin-

Luous eigenvalue problems if there were better ways of

direct estimation of their eigensolutions.

II
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APPENDIX A

NONSINGULARITY OF THE COEFFICIENT MATRICES
OF THE BASIC EQUATIONS

Consider the basic equations (3.19) used for finding multiple or close

eigenvalues and corresponding eigenvectors of the system

AX = x Bx (A.1)

in which A and B are symetric and both of order n, and B is positive

definite.

Let the coefficient matrix of Eq. (3.19) be denoted by F, that is

A - .i(O)B 
- BY(k)

F .... i = m,m+1,...,m+s-l<n (A.2)

_- y(k)TB
whr Y* (k

where 1ii (0 ) (i = mm+ 1,...,m+s-1) are initial approximate values of the

41 multiple or close eigenvalues xi Ci = mm+ 1,...,m+ s-1), and the s vectors

in - m[() , m+1(k), -, (k)1 are approximate values of the eigen-

vectors in X = [Xm 'xm+l'.. Xm+s-l] " Note that F is an (n+s)x(n+s)

symmetric matrix.

The determinant of F is a continuous function of the approximate eigen-

value and eigenvectors. Hence, if F is nonsingular when the approximate

*11
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values in F become the exact ones, then it will be also nonsingular for

close enough approximations. It is therefore sufficient for our purpose to

use the exact eigenvalue and eigenvectors in Eq. (A.2) to prove non-

singularity. Let us take m = 1 for the convenience of the following presen-

tation, then the resulting matrix G will be

SA - B  -BX

G . . .. . (i = 1,2,...,s) (A.3)

where X = [XlX 2,1.. .,oXs1.

To find the determinant of G, we follow the idea that Robinson and

Harris [44] used for showing the nonsingularity of the coefficient matrix

of Eq. (2.10), that is, we consider the eigenvalues Y's and corresponding

eigenvectors u's of the system

Gu = YBu (A.4)

or collectively

GU = BUD (A.5)

where

B 0 --

B =1

s J,

U .. 2 9 ; 

a
........... .....
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D = diag (Al, 2 ,...,

is = unit matrix of order s

- It may be verified by direct substitution that the (n+s) eigenvectors

u's and their corresponding eigenvalues Y's of Eq. (A.4) are:

k s s+l1,s +2,...n
Sej -e. 0

Y : (_ 1) (e..) (kk - i) (A.6)e3 i

where xi and xi are the eigenvalues and eigenvectors of the system Ax = ABx.

The vectors ej and e. form the diagonal matrices E and E such that

• " E = [e,e 2,...,es] diag (ell,e22 .. .,es)

E* -1*-*.~ -IlI
E = [el e2 , .. . e s ]  diag (e e22, e -ss

t A + A.+4 
,,e.. = 1 1 .J - 1,2,...,

ij = 1,2,...,s (A.7)

IIZ

I_ _ _ __1_ __ _I-,
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From Eqs. (A.5), (A.6), and (A.7)

det G = (det B) (det D)

n
= (-)s (det B) ii (Ak- Ai) (A.8)

k=s+1

In a similar way, the determinant of G for general m > I is

n
det G = (-i)s (det B) R (A k- i) (A.9)

k=1
kJS

where the set S = [m,m+l,...,m+s-l]. The matrix B is positive definite,

which implies that det B > 0. Thus, if xi (itS) is not equal or close to

any of xk (k = 1,2,...,n; kS), the determinant of G is never equal to zero
or close to zero, independently of whether xi (itS) are close, multiple, or

distinct.

From Eq. (A.2), if s = 1, the matrix F becomes the coefficient matrix

of Eq. (2.10), and by Eq. (A.9), the determinant of the matrix can be

approximated by

n
F = (-1) (det B) ii (Ak- Am) (A.10)

k=1 k m

kOm

Therefore, if xm X m-1 and xm X Am+' the matrix F is also nonsingular.

I.-
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APPENDIX B

CONVERGENCE ANALYSIS

The convergence analysis of the methods introduced in Chapters 2 and 3

will be presented. The eigenvalue problem we deal with here is

Axi = Ai Bx i (i = 1,2,...,n) (B.1)

in which A and B are symmetric matrices of order n, and B is positive

definite. The eigenvectors xi (i - 1,2,...,n) are assumed to be ortho-

normalized with respect to B.

B.1 Case of a Distinct Root

Let us rewrite Eq. (2.7) used for improving approximate values of a

distinct eigenvalue xj and the corresponding eigenvector xj of the system

represented by Eq. (B.1):

(A - x (O)B) Axj(k) - A (k) Bx (k) (A - A xj (B.2)

x (k)T BAx (k) 0 (B.3)
3 3

S(k) ad-(k)where .and k are approximate values of Xj and x. after k iterations,
and Ax(k) and Ax. are unknown incremental values of X (k) - (k)

a, te -(k) -(k)Let the approximate eigenvector x. ) and the incremental vector Ax.

be expanded in a series of the true eigenvectors, i.e.,

!I-

'I - -,_===
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n
j k) = (k) i

1=I

n
(k) Z (k)- (B.4)= , Acij xi

i=1 1

in which c ij(k) and Acij(k) are scalar coefficients. Since the - (k) is in

the vicinity of xis

C. (k)(B 
)max C << 1 (B.5)

ifj

The errors in (k) and (k), (k) and ej(k), may be defined by

- (k)
kYj (k «1

Sn 1/2
8 (k) / ' 2 (k) < 1 (B.6)

i~j

where the values of y.(k) and 6 (k) are very small compared with unity. If

the vectors -(k) and aredena defined by
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c (k)T ( (k) (k) $ (k)

=*k) (k),c~ .- ,n

= (0, (k) 0, ...,0) (B.7)
3k) (k)

The e (k) then represents very closely the angle between the vectors - (k)

and c(k) (see Fig. 1). The task here is to estimate -y(k+l) and ai

the errors in A. (k-i) and - (k-i)

Let us substitute Eq. (B.4) into Eqs. (B.2) and premultiply by i to

obtain

( i _ ( 0 )) AC .(k) - AX (k) cij(k) = x ( i  A (k)) cij (k)
l13

(i = 1, 2, ... ,n) (B.8)

Substitution of Eq. (B.4) into Eq. (B.3) and use of the orthonormality

of the eigenvectors with respect to B results in

• u nn ci(k) (k)
-- j AC ij 0 (B.9)

- - i=1 .1
.(k) (k)

The unknown quantities, Ax and Aci. will be found from Eqs. (B.8)(B.3

and (B.9).

I'
II
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Frorm Eq. (B.8)

(k)= Ax(k) " (xi(o)" cij(k) (i = 1, 2,...,n) (B.10)

Now introduce Eq. (B.10) into Eq. (B.9) to obtain

(I+ Ax A ( k )  x Xj"X ( k ) + (xj -X ( 0 ) )a B.

where

n(0) (k;2
- ( )  .(k)2

iqj

n i (k) .(k) 2B 12i=1 1i 3 C..

n i-

icj

Using Eqs. (B.5) and (B.6), we get

I i<' 02(k) 1I I< h oe( k  << 1-

g 3 I~ l-<ge.,

J •~ii
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where

h = max <() I
i#j

max (0) 1 = 1, 2,...,n) (B.14)

i #j

Therefore, from Eq. (B.11), the Axj(k) may be approximated by

A i (k) =X - A (k) + (Xj - j(0))o (B.15)

or

Aj(k+l) =.(k) + AAj(k)

3 3A + ( X - ).(0 )) (B.16)

Substitute Eq. (B.15) into Eq. (8.10) to obtain

AC(k) (k) +(1 + ) (k)"t;~ ~ = ij  ki k (0 )  i

Xi X

( .. .. sn),J
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or

cij(k+1) (k) + (k)

A 0 + 0) c (k213 (, .,n) (B.18)

from which, it follows that

c i(k+1) (1 + 0) c(k) (8.19)

x(k+ 1)  j(k+1) cnnobefud
The measure of the error in x , can now be found:

n (k+1) 2 1/2

Vi

n j (0) 2 c,(k) 2 112

ji

e(k) (B.20) 4

where h is given in Eq. (8.14) and is very small compared with unity. To

find yj(k+), the measure of the error of x (k+1, we use Eqs. (B.6) and

(8.16), giving

Ii
1I
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-- (k+1) = XA (k+l)
Yj

).

3

x* • 02(k) (B.21)

by whi ch

(0)(k+2) < 2(k+1)Yj g a2(k+) (B.22)

Substitution of Eq. (B.20) into Eq. (B.22) and use of Eq. (B.21) results in

yj(k+2) : h2 yj(k+l) (B.23)

Hence, it can be seen from Eqs. (B.20) and (B.23) that the jth eigenvector

and eigenvalue converge linearly with errors multiplied by h (h <<1) and

h2 respectively in each iteration.

B.2 Case of a Multiple Root

The convergence analysis of the method for finding a multiple eigen-

value and the corresponding eigenvectors of the system given in Eq. (B1)

will now be presented.
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For convenience, but without loss of generality, the s lowest eigen-

values are assumed to be equal, and the eigenvalue of multiplicity s is

denoted by X*, i.e., X* = X = = X 2 X S* Let us rewrite Eqs. (3.21)

and (3.17), which are the basic equations for improving approximate values

of the multiple eigenvalue and corresponding eigenvectors, i.e.,

(A - ujj(O)B) 6 (k) - BY(k) A a(k) = BY(k) a (k) - A ;j(k)

(j = 1, 2,...,s) (B.24)

y(k)TB (i)y =0 (j = 1, 2,...,s) (B.25)

and

Y(k)T BY(k) = I (B.26)

where Is is the unit matrix of order s, and

y(k) = [y1(k), 2 (k) ' -' ys (k)

T
A (k) = ( (k) (k) (k))

iA(k)T= (Alj(k), A2j (k), A s )  (B.27)

(k))The (j = 1, 2,..., s) are approximations to the multiple elgenvalue
A* =1=~=* .. =x 5, nd hey(k) (i = 1, 2,.. ,s) are approximations
x*= I 2 =  " " =  s andthe j .

i_

a. -, ,,
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to the true eigenvectors ij (j 1, 2,...,s). The 7 (k) and Aa.(k) are

unknown incremental vectors for yj(k) and a.(k)*

Let the approximate eigenvectors yj(k) and the incremental vectors

y(k) be expanded in a series of the true eigenvectors xi (i 1, 2,...,n),

as in Eq. (B.4), i.e.,

n
- (k) = (k)x

i=1

n

Ay(k) A Z cij(k) (j = 1, 2 ,s) (B.28)Ayjj = .

Denoting the errors in Iijj(k) and yj(k by yj(k) and e (k), we have

(k)'j (k) = j - jj~k

8 (k)

i (k) "= -T << 1 (8.29)

where

I 112

a (k) c 2 (k)ji

n111

(k) 2 (k)(
,, = cij(B.30)

,i=s+l

~il

1t
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The task here is to estimate the values of yjk+l) and e.(k+l)* Now

and )., and the matrix C ()be

let the vectors Ej (k) and Acj~ k adtemti ~)b

(k) (k) (k) (k))

c ( (c c2  C

- (k)T (k (k) Ac (k)AC(AClj AC 2 "" A nj

C(k) = 1 (k), c 2(k)..., c s(k)I (B.31)

Then, defining the matrix X = [il, i 2' x"' n, we may write Eq. (B.28) as

(k) = X cj(k) (j = 1, 2,...,s) (B.32)

or

y(k) = X C(k) (B.33)

and

Ay(k) X Ac.(k) (j = 1, 2,...,s) (B.34)

Substitution of Eqs. (B.32) - (B.34) into Eqs. (B.24) - (B.26), and pre-

multiplication of Eq. (B.24) by XT results in

(A- 1jj (0) 1 AE (k) _ c(k) Ad (k) = C(k) (k) A (k) (B.35)

c Ac(k) = 0 (B.36)

C(k)T C(k) = Is  (B.37)

.... -'II I- -I.--.....
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where

A=diag (x,,, X 2 9... X n)

nn

LetusindAC.(k and Ad.(k using Eqs. (B.35) - (B.37). From Eq. (B.35)

(0(k)-1 (k)na (k(c)k(k) (B.38)
AC ( - ajk Inl( A c.(

Substitution of Eq. (B.38) into Eq. (B.36) leads to

F (k) a~k+l)= - (k) (B.39)

where

F (k) C c(k) (A (0) 1 C(k~)

-(k) ... (k )T p (0) 1 n)-1A- (k) (B.40)

Note that F (k) is a symmetric matrix of order s. Using Eq. (B.33), we can

* show that

1k R(k) (k) (k)
F (0 (I + E) R (B.41)

a.j

j where

R 1 L 9. PC (B.42)
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an h ( )th E(k) (k

and the (t, m) element of the symmetric matrix E , e , is

n ,(0) C (k).,(k) a ( k ) (m = '2 " s

mm i=' i O' j( )

(k) n cit(k) i (k ,I

e m(k) - 1  c.(k)

i=s+l i - j(

(t, m = 1, 2,...,s; Z m) (B.43)

The a. (k) (i = 1, 2,...,s) of Eq. (B.42) are defined in Eq. (B.30). By

Eq. (B.29), the absolute values of etm(k) (U, m = 1, 2,... ,s) are very small

compared with unity, thus

F(k) 2(k) 2(k) 2(k)
F( - ((0) diag a2(k) s ) (B.44)

- (k)

Similarly, the values of the s components of the vector gj can be found

from Eq. (B.40), i.e.,

2(k)
(k) a, .3(0) (k)]gjj , (0) [P+(X-. i njj

- jj. :

(k) .i(k) aj (k) uJ ( 0 )  (k
,(k) _ i1k) (k) (i 1, 2 ... ,Is i 0 j) (B.45)

A- j

L.

'I _ ____ ____ ____ ____ ____ ____ ___



73

where

n ()(k - >m nu
njj A (0) (k) ,;

(k) C(k)

(k L. C
nij :-L m (0 i .a (B. 46)

COT (k

Since a : (k+) k+l) (k+l)Sin' c2j "" by definition (see

Eq. (B.2)), Eqs. (B.39), (B.4 ), and (B.45) result in

j j : + W* 0- ) n(k) (j : 1, 2,...,s)

pij (k-e) jj 0)nij (k) (i,j =1, 2,...,s; i j) (B.47)

Substitution of Eq. (B.43) into Eq. (B.38) results in

5 A

AC (k) 1 Cim(k) (k+l) (k)Scij (OF im -f (0) cij

i -jj m=1 jj

-A. A* s(0)S(k) +(k) +m (k)]
(OF c ij + (0) -[mj nj ,i nmj

1 3 1 jj m=1

(0)

= - (k) + jj [I + 0 (C2)] ci  (k)
- 1i 33

eR

(i = 1, 2,...,n) (B.48)

"" 1g ll W ,* , . ... ... ... .. - [-
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or

(0)

ci(k+1) " jj(0) (k) (i 1, 2,...,n) (B.49)

from which, since : A1 = A2  A"" it follows that

c II c.. (k+) c(k) (i ( 1, 2,...,s) (B.50)

Thus,
1/2

n

I (ciQ(k+1)

(k+1) i=s+l 1

3j s

s c i k + l )2]

Li=1

:.i=s+i Xi pjj(O aJ

3
h(k)() B.1

where y(k) is defined in Eq. (B.30), and

h = max "j (i s+1, s+2,... n) (B.52)i " jj(O)T-

To find , the measure of the error of jj(k+1), Eqs. (B.29)

and (B.47) are used, which results in

I1
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(k+1) A - (k+1)

3j X *

- ~*~(O (k (B. 53)

where njj (k) is given in Eq. (B.46). Its absolute value is

(k) a 2(k) (i s+1, s+2,... ,n) (8.54)
"jj i IA. - ii . 1

Therefore, from Eq. (B.53)

y.(k+1) 62(k) (B.55)

where

(0)

4=max (.0)1 (i =s+1, s+2,... ,n) (8.56)
i j

From Eqs. (B.55) and (8.51),

(k+2) 2 (k+1)

S2 (k1)

=h
2 yj ((j) 1, 2,... ,s) (8.57)

t
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Hence, it can be seen from Eqs. (B.5n) and (B.5l) that the multiple eigen-

value and the corresponding eigenvectors converge linearly with errors multi-

plied by h2 (h << 1) and h respectively in each iteration.

From Eqs. (B.47) and (B.49),

urn i. *(k) = A* for i = j (i,j = 1, 2,...,s) (B.58)
=0 fori j

and

lim c..(k) = 0 (i = S+1, s+2,...,n;
k-*c, 1J

j , 2,...,s) (.59)

which shows that as k-, the vectors R. (k) (j= , 2,...,s) span the subspace

of xj (j = 1, 2,..., s) whose corresponding eigenvalue is multiple. Thus,

the x(k) (j = 1, 2,...,s) themselves are a set of true eigenvectors, ortho-

normalized with respect to B.

.1

7-I
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APPENDIX C

THE BASIC THEOREMS ON THE CONSTRAINED STATIONARY-VALUE PROBLEM

Three theorems used for the development of the method for finding

multiple or close eigenvalues and the corresponding eigenvectors will be

presented. For convenience, two definitions will be given first.

Definition 1

Let S be a set of positive integers pi (i = 1,2,...,s) which are

smaller than or equal to n, the order of the matrices A and B of the

system Ax = xBx, i.e., S = (P1 1 P2 ""'9Ps ). Then, R is defined as the

subspace spanned by the s eigenvectors xi (i S).

Definition 2

If no vector in the subspace R is orthogonal to all vectors

yi (i = 1,2,...,s) (with respect to B), then the set of the vectors
1

y i (i = 1,2,...,s) is said to be an admissible frame with respect to the

subspace R.

Theorem 1
Iwo With the above definitions, if none of the eigenvalues xi (i S) is

equal to any xj (jS), then among all admissible frames of vectors
yi (i = 1,2,...,s) a frame which renders w extremum in the following con-

strained stationary-value problem spans the subspace R, and its stationary
value is the sum of the eigenvalues xi (irS):

1I
I

I -_
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Find the stationary value of

S
W -T -

= YiAYi (C.1)
i=1

subject to

y = 'i (i,j = 1,2,...,s) (C.2)

where 6ij is the Kronecker delta.

Proof: For convenience, but without loss of generality, the set

S = (1,2,...,s n) is taken, that is, R is the subspace spanned by

xi (i = 1,2,... ,s). Let the vectors Yi (i = 1,2,... ,s) be expanded in a

series of the eigenvectors x (k = 1929...,n):k

n

Yi= CkiXk (k = 1,2,...,n) (C.3)

k=1

It will be shown that a solution of Eqs. (C.1) and (C.2) yields

Cki = 0 for k = s+1, s+2,...,n (C.5)

Substitution of Eq. (C.3) into Eqs. (C.1) and (C.2) results in

s n

w- L . Xkcki (C.6)

1=1 i=1

and

[t1
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n

no - ki Ckj =ij (i,j = 1,2,...,s) (C.7)
k=1

Let us use the method of Lagrange multipliers to solve the stationary-value

problem of Eqs. (C.6) and (C.7). Introducing the undetermined multipliers

uij (ij = 1,2,...,s) and letting uij = lji, we have the Lagrangian

s n s s n

L ? kCki - ( CkiCkji- 6i ) (C.8)

i=1 k=1 i=1 j=1 k=1

Since the first derivatives of L with respect to the unknowns Cki and ij

should vanish,

=L 2 (AkCki ) = 0 (C.9)
ack" j=1

* n
a ., kL c= Q - '.. = 0 (C.10)

13..k=1

We may write Eqs. (C.9) and (C.10) in matrix form as

AC = CD (C.11)

c'c I (C.12)
'"S

*where

ia

A = diag (xi, X2 .O

is = unit matrix of order s

Iku
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and the (kl)th element of the nxs matrix C is Cki (k = 1,2,...,n;

i = 1,2,... ,s), and the (i,j)th element of the sxs matrix D is

11ij (iJ = 1.2,... ,s). Let the matrix C be partitioned into the two

submatrices Cs and Cn- s , where Cs is the sxs matrix having the elements

of the first s rows of C, and Cn- s is the remaining (n-s)xs matrix.

Then, Eqs. (C.11) and (C.12) may be written as

A C = CsD (C.13)s s S

An-s Cns = CnsD (C.14)

CTC +CT C I (C.15)
s s n-s n-s s

where

As = diag (X1,X2,...,sS)

An-s = diag (Xs+ 1 ,Xs+ 2 ,...Xn)

Since 1ij = Iji was taken

T
D =D (C.16)

by which from Eq. (C. 13)

CTAsT DCT  (C.17)

Postmultiplication of Eq. (C.14) by C and use of Eq. (C.17) leads to ..

A C CT C DCT
A n-s s n-s s.

Cs A (C.18)
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Let

U Cn c T (C. 19)n S

Then, Eq. (C.18) yields

=L~ ui Xju. (1 = 12..ns

j= 1,2, ... ,s) (C. 20)

Since

U= n-Ss c (C. 21)

But the set of vectors y (i = 1,2,... ,s) is an admissible frame with

respect to B, from which it is not difficult to show that

det C T 0 (C.22)
s

From Eqs. (C.21) and (C.22), we obtain

C ns 0 (C.23)

or

* ~Ck = 0 Ci=1,2,...,s5; k =S+1,s+2,... ,n) (C.24)

This shows that the subspace spanned by the vectors i (1 1,29-9.s) is

**the subspace of the eigenvectors x 1 (i = 1.2, ...,s), which is to be proved

* - here. Furthermore, from Eq. (C.6) we obtain
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S S
W - c- 2

-k 2
i=1 k=1

s s

= - ki
k=1 ki=l

Z: (c.25)

k=1

which implies that the stationary value is the sum of the eigenvalues

xk (k = 1,2,...,s).

Theorem 2

If a frame of s vectors ji (i = 1,2,...,s) which are mutually ortho-

normal with respect to B spans the subspace R, then Eqs. (C.13), (C.14),

and (C.15) are satisfied, i.e., w is stationary.

Proof: Since the vectors Yi (i = 1,2,...!,s) are in the subspace R,

and are orthonormal with respect to B,

Cn~s = 0

and

CT = I or CT =C 1  (C.26)

Hence, Eqs. (C.14) and (C.15) are satisfied. Furthermore, we have

L.

El
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A.Cs = (C sCT) sCs

= C (CT AC) (C.27)

We now define D by D =CT A C then

AC = CsD (C.28)

s S

which is equivalent to Eq. (C.13), i.e., Eq. (C.13) is also satisfied.

Theorem 3

If the s vectors Yi (i = 1,2,...,s) span the subspace R of xi i eS),

then the Lagrange multipliers pij (ij = 1,2,...,s) defined in Theorem 1

have the following properties: if the eigenvalues xi (ieS) are close

together

11 for i j (C.29), ij Ili ii

and if the eigenvalues are multiple, i.e., x* = i (ieS)

= t p.. for i 0j

1 1i =(C.30)

K Proof: For convenience, we take the set S = (1,2,... ,s).

U
.'
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Then, from Eq. (C.13)

D C T A C (C.31)

or

Zjj 2 Akckickj
k= 1

S s

Z Cki ckQ + T (A k A x c Cki C kj (C.32)

FrmE.IC7 ik=1 k=1

Z Ck Ck ij~v (i~j =1,2,...,s)

k= 1

Thus

s

vij Z (Ak - i) cki C ki for j
k= 1

s

+ )-c~2 (C.33)
t k= 1

If the elgenvalues x.i (i 1.2,...,s) are close together, i.e.,

*A xi'k~ (k Ithen Eq. (C.33) implies that

i j I « f i for i j(C.34)
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*.Furthermore, if all the elgenvalues x.i (i =1,2,... ,s) are multiple, i.e.,

x* 1 x2 A s' then from Eq. (C.33)

~~j1

(i 12 . P)(.5
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TABLE 1. NUMBER OF OPERATIONS FOR EIGENSOLUTIONS

Method Operation Calculation Number of Operations

Proposed Multiplication A - x (O)B n (mb + 1)
Method ofChapter 2 k()

Factorization LDU = A - X.B nm (ma + 3)

Iteration

Multiplication Ax (k) n (2ma + 1)

Bx.(k) n (2m b + 1)

r (k) = Ax (k) _ AX (k) Bx(k) n

Factorization LOU = F(k) n (ma + 1)

Solve Eq. (2.7) for Ax. (k) and ax (k)  2n (ma + 1)

=1 2Total N -pn (ma + 3ma + 2mb + 2) + Ton (5ma + 2mb + 6)

14here

A-A. -Bx(k)1

F(k) =

-x (k) TB 0

Tp = Total number of iterations by the proposed method. Tp p Tr.

Np = Total number of operations by the proposed method.

-

.

p

IF
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TABLE 1. (Continued)

Method Operation Calculation Nunber of Operations

Proposed Multiplication A -11p ) n (m b + 1)
Method of

Factorization LDU =A - gnma (m + 3)

Iteration

Multiplication Ayj (k )  n (2ma + 1)

Multiplication By1 (k) (i = 1,2.... s) sn (2mb + 1)

s

Multiplication rj(k) = Ay (k)- ij(k) By1 (k) sn

Factorization LDU = F(k) sn ma + 1)]

Solve Eq. (3.21) for ay. (k) and Ad(k) n (2ma + s + 1)

= 1 pn ( a+amb+2) + Tpn [(s+4) ma+ 2smb + (s2+7s+4)]

Where

A-,,jj(OB ,- BYk

F(k)

; .(k)T B

(k) = (k) yk) (k)

-: ? ' ......... I " ""...
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TABLE 1. (Continued)

Method Operation Calculation Number of Operations

Robinson- Multiplication A - x.(k) B n (m + 1)
Harris 3 a
Method Multiplication r.i (k) = (A (k- ) k n (m + 1

Multiplication Bx i(k) n (m b 1

Factorization LOU = G~k) nI2T na (m a + 5) + n

Solve Eq. (2.6) for Axj.(k) and &A i(k 2n (m a+ 1)

Total Nr .1 ( 2 ++6 +12)

Where

rA-x (k)B B (k)

G ~ ~ (k T~ - .
T r Total number of iterations by the Robinson-Harris method. Tr T P
N r Total number of operations by the fobinson-Harris method.

r_7lot
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TABLE 1. (Continued)

Method Operation Calculation Number of Operations

Subspace Factorizatio LU = A nmia (ma + 3)/2
Iteration
Method

Iteration

multiplication BX(k-1) qn (2mb + 1)

Solve for Y(k) AY(k) = BX(k-l) qn (2m + 1)

a

Multiplication A*(k) = Y (k)TBX(k-1) qn (q + 1)12

Multiplication BY(k) qn (2mb + 1)

*(k) y(k)TBy(k)

Multiplication B = qn (q + 1)12

Solve for Z(k) A*(k)z(k) = *(k)z(k)D(k) 0 (q3  neglected

and D
(k )

Multiplication X(k) = Z(k)1 (k) nq2

Subtotal qn (2ma + 4mb + 2q + 4)

Sturm Sequence Check

"(k) kSMultiplication A-x pb+1

Factorization LU = A-Ap (k)B nma (ma + 3)/2

Total Ns  = Tsqn (2m) +4 + 2q + 4) + n (m + 3m + m
S s a) +mb a a + b+ 1)

Note: q = max (2p, p+8)

Ts = Total number of iterations by subspace iteration ethod.

Ns = Total number of ooerations by subsoace iteration method.

It is assumed that ma 1%.
a-,L

I
EI



IV

gO

TABLE 2. EIGENVALUES OF THE PLANE FRAME PROBLEM
(DISTINCT ROOTS)

Method Eigenvalues
of Iteration

Analysis Number (1) (2) (3) (4)

Proposed 0 0.474744x10
0  0.443880x10

1  0.132953x10
2  0.284745x102

Method (0.36x10-2 )* (0.28x10- 1) (0.77x10-1 ) (0.22x100 )

I 0.474744x100  0.443876x101 0.132921x102 0.284091x102

(0.44x10
5) (0.45x10

- 3) (0.38x10
2) (0.27x10

1)

2 0.474744x10
0  0.443876x10

1  0.132921x10
2  0.284091x10

2

(0.82x10 13) (0.27x10" ) (0.17x10- ) (0.18x10 3 )

3 0.284091x102

(0.19x10 "5 )

4 0.284091x102

(0.23x10 )

Robinson 0 0.474744x10
0  0.443880x10

1  0.132953x10
2  0.284745x10

2

Harris (0.36x10-2) (0.28x10-1) (0.77x10-) (0.22x100
Method

1 0.474744x10
0  0.443876x10

1  0.132921x10
2  0.284091x0

2

(0.44x10"5 ) (0.45x10 3 ) (0.38x10"2 ) (0.27x10- 1 )

2 0.474744x10
0  0.443876x10

1  0.132921x10
2  0.284091x10

2

(0.82x0 
13 )  (0.2740 

9 )  (0.17x10 
6 )  (0.18x0

- 3

3 0.284091x0 2

(0.13x0 )

* Numbers in parentheses indicate errors in the approximate

eigenvectors xj(k)

-
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TABLE 2. (Continued)

Method Eigenvalues
of Iteration

Analysis Number (1) (2) (3) (4)

Subspace 1 0.476915x10
0  0.465927x10

1  0.153636x10
2  0.369761x10

2

Iteration 0 1
Method 2 0.474744x10 0.443880x10 0.132953x102  0.284745x102

(0.36x10 2)*  (0.28x10" 1) (0.77x10" 1) (0.22x102 )

3 0.474744x10
0  0.443876x10' 0.132921x10

2  0.284116x10
2

(0.44x10"5) (0.44x10 3 ) (0.35x10 2 ) (0.19xlO" )

4 0.474744x10
0  0.443876x10

1  0.132921x10
2  0.284099x10

2

(0.11x10 7) (0.22x10-4 ) (0.33x10"3 ) (0.48x10 2 )

5 0.474744x10
0  0.443876x10

1  0.132921x10
2  0.284094x10

2

(0.83x10 10 ) (0.19x10 5) (0.90x10 4 ) (0.34x10" )

6 0.474744x10
0  0.443876x10

1  0.132921x10
2  0.284092x10

2

(0.71x10-
12) (O.16xlO

-6) (0.28x10
-4) (0.36x10

- 2)

7 0.474744x100  0.443876x101  0.132921x102  0,284091x102

(0.11x10"13) (0.57x10"8 ) (0.28x10 5 ) (0.11x10 2 )

8 0.474744x10
0  0.443876x10

1  0.132921x10
2  0.284091x10

2

(0.13x0
13) (0.26xI0

-9) (0.28x10
6) (0.14x10

" )

9 0.474744x0
0  0.443876x10

1  0.132921x10
2  0.284091x10

2

(0.16x10
3 ) (0.17x&

1 0 ) (0.53x10 
- ) (0.32x10

" )

* 10 0.474744x100  0.443876x101  0.132921x102  0.284091x102

(0.13x10-
1 3 ) (0.93x0

"12 ) (0.91x10
- ) (0.99x10

" )

11 0.474744x00 0.443876x10
1  0.132921x10

2  0.284091x10
2

(0. 13xlO 13 ) (0.52x10 13 ) (0.12xlO " ) (0.33x10- )

12 0.474744x100  0.443876x101  0.132921x102  0.284091x102

(0.28x10
13) (0.50x10

13) (0.18xl
9) (0.12x10

5)

• Numbers in parentheses Indicate errors in the approximate

*eigenvectors x W.

I
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TABLE 3. EIGENVALUES OF THE CIRCULAR ARCH PROBLEM
(DISTINCT ROOTS)

Method Eigenvalues/xo*
of Iteration

Analysis Number (1) (2) (3)

Proposed 0 0.102714x10 2 0.919516x10"2  0.363073x10 1

Method 1 0.102640x10"2 0.909467x10-2  0.341422x10 "

(0.59x10-3)** (0.53x10-2 ) (0.35x10"1 )

2 0.102640x10"2  0.909467x10 2  0.341448x10 1

(0.26x0_
8) (0.10xo - ) (0.21x10_3)

3 0.909467x10 2  0.341448x10 1

(0.10x10 8) (0.17x10 "5 )

4 0.341448x10 1

(0.33x10
7)

Robinson- 0 0.102714x10 "2  0.919516x10"2  0.363073x10 1

Harris -2
Method 1 0.102640x10 0.909467x10 2  0.341422x10"

(0.59x10 ) (0.53x10 2 ) (0.35x10"1 )

2 0.102640x10 2  0.909467x10-2  0.341448x10 1

(0.26x10 8) (0.10x10 5 ) (0.21x10"3 )

3 0.909467x10 2  0.341448x1 "1

(0.45x10 
12 ) (0.20x10 )

A 0 E/Pa
2(-v

2 )"

Numbers in parentheses indicate errors in the approximate
(k)

elgenvectors xj

.1J



L
i 93

TABLE 3. (Continued)

Method Elgenvalues/x*
of Iteration

Analysis Number (1) (2) (3)

- Subspace 1 0.102714x10"2  0.919516x10" 2  0.363073x10 1

Iteration
Method 2 0.102640x10 2  0.909468x10 2  0.341476x10 1

(0.59x1O
3)** (0.52x0

2) (0.32x10
1)

3 0.102640x10"2  0.909467x10"2  0.341448x10 1

(0.41x106 ) (0.62x10 4) (0.26x10"2 )

0 .102640x10-  0.909467x10 2  0.341448x10 1

(0.58x10 9) (0.12x10 5) (0.23x0 "3)

5 0.102640x10 2  0.909467x10 2  0.341448x10 1

(0.12x10"11) (0.28x107 ) (0.21x104 )

6 0.102640x10 2  0.909467x10-2  0.341448x10 1

• . (0.23x10 13) (0.79x10 9) (0.19x10 5)

0.102640x10 2  0.909467x10 2  0.341448x10 1

(.12x10 - 3 ) (0.25x10 10 ) (0.17x10-6 )

i 2

No E/pa2(1-v2).

** Numbers in parentheses indicate errors in the approximate

eigenvectors xj (k)

i
N

I"
!
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TABLE 4. EIGENVALUES OF THE SQUARE PLATE PROBLEM
(DOUBLE ROOTS)

Method Elgenvalues/a*
of Iteration

Analysis Number (1) (2) (3) (4)

Proposed 0 0.375840x101  0.230212x102  0.230212x102  0.530627x102

Method 1 0.375838x101  0.230121x102  0.230121x102  0.529932x102

(0.80x10-3)** (0.10x10 1) (0.10x10 1) (0.21x10 ")

2 0.375838x101  0.230121x102  0.230121x102  0.529932x102

(0.44x10-11) (0.46x10 7) (0.46x10 "7) (0.59x10 6 )

Subspace 1 0.375840x101  0.230212x102  0.230212x102  0.530627x102

Iteration
Method 2 0.375838x101  0.230121x102  0.230121x102  0.529932x102

(0.800x1 3) (0.10x10 1) (0.10x10-1) (0.21x10"1)

3 0.375838x101  0.230121x102  0.230121x102  0.529932x102

(0.65x10"6) (0.11x10"3) (0.11x10 3) (0.43x10"3)

4 0.375838x10 1  0.230]21x102  0.230121x102  0.529932x10
2

(0.53x10"9) (0.13x10"5) (0.13x10 5) (0.90x10 5 )

5 0.375838x101 0.230121x102  0.230121x102  0.529932x10 2

(0.44x10 12) (0.15x10-7) (0.15x10 7) (0.19x10 " )

* = 14De/(a4), where 
0e = Eh

3/12(1 - v2)

Numbers in parentheses indicate errors in the approximate(k)
elgenvectors yj

4.

[I
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TABLE 5. EIGENVALUES OF THE RECTANGULAR PLATE PROBLEM
T L 5(CLOSE ROOTS)

Method Elgenvalues/m*
of Iteration

Analysis Number (1) (2) (3) (4)

Proposed 0 0.368470x10 1  0.222957x102  0.228454x102  0.520215x102

Method 1 0.268468x101  0.222868x10 2  0.228264x102  0.519522x102

(0.80 x0 3 ) (0.100l1 ) (0.l0x 10" ) (0.21x10"1)

2 0.368468x10
1  0.22288x10

2  0.228364x10
2  0519533x10

2

(0.44x10
- 11 ) (0.47x10-7) (0.45x10

- 7) (0.59x10-
6)

Subspace 1 0.368470x101 0.222957x10
2  0.228454x10

2  0.520215x10
2

Iteration
Method 2 0.368468x10 1  0.222868x102  0.228364x102  0.519533x102

(0.80x10"3 ) (0.10x10"1) (0.10x10 "1 ) (0.21x10" )
3 0.368468x10

1  0.222868x10
2  0.228364x10

2  0.519533x10
2

(0.65x10
- ) ( 3.lxlO) (0.11xlO

3) (0.43x10 )

4 0.368468x10 1  0.222868x102  0.228364x102  0.519533x102(0.53x10 9) (0.13x1&O5 ) (O.13x1 5) (0.90xlO- )

5 0.368468x10' 0.222868x102  0.228364x102  0.519533x102

(0.46x10
12 ) (O.15xlO

7) (0.14x0 ) (O.19x10
- 6 )

= eD /(ap), where D = Eh3 /120 2- .

** Numbers in parentheses indicate errors in the approximate

I ] eigenvectors yj(k)

1,

1124.

'I

Ip,
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TABLE 6. COMPARISON OF THE TOTAL NUMBER OF OPERATIONS

Input Data Nimber of Number of Operations Ratio -

Problem Iterations
Type n %m p q Tp Tr Ts  Np Nr  Ns  NJNp Ns/N €

Frame 330 35 35 4 10 10 9 12 3.50x106  4.57x106  9.72x106  1.31 2.78

Arch 22 4 0 3 5 9 8 7 8.87x10 3  9.77x103  1.76x104  1.10 1.98

Plate 39 16 16 4 9 8 - 5 1.27x 5  
- 2.20x105  1.73

Note

n Order of stiffness and mass matrices

ma Average half bandwidth of stiffness matrix

m b  : Average half bandwidth of mass matrix

p Number of eigenvalues and eigenvectors sought

q Number of iteration vectors. q = max (2p, p 8)

T : Number of Iterations by the proposed method

Tr  Number of iterations by the Robinson-Harris method

Ts : Number of iterations by the subspace iteration method

N : Total number of operations by the proposed method

Nr  Total number of operations by the Robinson-Harris method

Ns  Total number of operations by the subspace iteration method

i

"' 'b '' " ' " " [ K
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TABLE 7. COMPARISON BETWEEN THE THEORETICAL CONVERGENCE RATES
FOR EIGENVECTORS AND THE NUMERICAL RESULTS - FRAME PROBLEM

(DISTINCT ROOTS)

Method Eigenvalue Number
of Iteration

Analysis Number 1 2 3 4

Proposed 1 1.9x10
8  6.0x10-

7  4.4x10
5  6.7x10

3

Method 2 1. lxl "2

3 1.2x10
2

Theory 1.3x10
-8  10x10

5  3.6x10
4  1.2x10

2

Subspace 2 1.2x10 3  1.6x10 2  4.5x10 2  8.6x10 2

Iteration 3 2.5x10-3  5.0x10"2  9.4xi0 "2  2.5x10" 1

Method 4 7.5x10-3  8.7x10 "2  
2.7x10"1  7.Ix1O" 1

5 8.6x10-3  8.4x10-
2  3.1xl0

1  1.1x10
0

6 1.5410-
3  3.6x10

2  1.0x10
- 1  3.lx10 1

7 * 4.6x10 -2  1.0x10- 1  1.3xlO "1

-2 -1 -1
8 * 6.5x10 1.9x10 2.3x10
9 * 5.5x10"2  1.7x10- 1  3.lxlo'1

10 5.6x10
2  1.3x10

- 1  3.3x10
1

11 * 1.5x10- 1  3.6x10
1

Theory 5.6x10
3  5.ZxIO

-2  1.6xl10 3.3x10
"1

IE
., I * :Errors too small for comparison because of round-off error.

I'
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TABLE 8. COMPARISON BETWEEN THE THEORETICAL CONVERGENCE RATES FOR
EIGENVECTORS AND THE NUMERICAL RESULTS - SQUARE PLATE PROBLEM

(DOUBLE ROOTS)

Method Elgenvalue Number
of Iteration

Analysis Number 1 2 3 4

Proposed 1 5.5x0 9  4.6xO 6  4.6x 10"6  2.8xlO -5

Method Theory 1.0xlO"6  4.7x10"4  4.7x10"4  2.3x10" 3

Subspace 2 8.lxlO 4  1.lx1O 2  1.lx10 2  2.0x10 2

Iteration 3 8.2x0 4  1.2x0 -2  1.2x0 2  2.IxlO"2

4 8.3x0 -4  1.2xlO"2  
1.2xl0"2  2.lxlO"2

Theory 1.lxlO 2  6.8x10 2  6.8X10 2  1.6x0 1  
-

IIm

1
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TABLE 9. NUMERICAL CONVERGENCE RATES FOR EIGENVECTORS -
RECTANGULAR PLATE PROBLEM

(CLOSE ROOTS)

Method Eigenvalue Number
of Iteration

Analysis Number 1 2 3 4

Proposed 1 5.5x10- 9  4.7x10 6  4.5x10 6  2.8x10 5

MethodI
Subspe:e 2 8.Ix10 4  1.1x10 -  1.1xlO "  2.0x10 2

Iteracion - 2 -2
Method 3 8.2x10-4  1.2x10-2  1.2x0 2  2.1xlO

4 8.7x10 4  1.2xl0 2  1.1xlO 2  2.1x10-2

Theory l. lxlO
2  6.8x10-

2  7.0xlO
2  1.6x101 1

Ii
17~

1~.

~I
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N FS-120 Division of Engineering and
Office of Flight Standards Applied Sciences
Federal Aviation Agency Pasadena, California 91109
Washington, D.C. 20553

Professor Paul M. Naghdi
National Academy of Sciences University of California
National Research Council Department of Mechanical Engineering
Ship Hull Research Committee Berkeley, California 94720
2101 Constitution Avenue
Washington, D.C. 20418 Professor A. J. Durelli
Attn: Mr. A. R. Lytle Oakland University

School of Engineering
National Science Foundation Rochester, Missouri 48063
Engineering Mechanics Section
Division of Engineering Professor F. L. DiMaggio
Washington, D.C. 20550 Columbia University

Department of Civil Engineering
Picatinny Arsenal New York, New York 10027

Plastics Technical Evaluation Center
Attn: Technical Information Section Professor Norman Jones
Dover, New Jersey 07801 The University of Liverpool

Department of Mechanical Engineering

Maritime Administration P. 0. Box 147
Office of Maritime Technology Brownlow Hill
14th and Constitution Avenue, NW. Liverpool L69 3BX
Washington, D.C. 20230 England

PART 2 - Contractors and Other Technical Professor E. J. Skudrzyk

Collaborators Pennsylvania State University
Applied Research Laboratory

Universities Department of Physics
State College, Pennsylvania 16801

Dr. J. Tinsley Oden
University of Texas at Austin Professor J. Kloaner
345 Engineering Science Building Polytechnic Institute of New York
Austin, Texas 78712 Department of Mechanical and

Aerospace Engineering

Professor Julius Miklowitz 333 Jay Street
California Institute of Technology Brooklyn, New York 11201
Division of Engineering

and Applied Sciences Professor R. A. Schapery
Pasadena, California 91109 Texas A&M University

Department of Civil Engineering
College Station, Texas 77843
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Universities (Con't.) Universities (Con't)

Professor Walter D. Pilkey Professor A. C. Eringen
University of Virginia Princeton University
Research Laboratories for the Department of Aerospace and

Engineering Sciences and Mechanical Sciences
Applied Sciences Princeton, Nev Jersey 08540

Charlottesville, Virginia 22901
Professor E. H. Lee

Professor K. D. Willmert Stanford University
Clarkson College of Technology Division of Engineering Mechanics
Department of Mechanical Engineering Stanford, California 94305
Potsdam, New York 13676

Professor Albert I. King
Dr. Walter E. Haisler Wayne State University
Texas A&M University Biomechanics Research Center
Aerospace Engineering Department Detroit, Michigan 48202
College Station, Texas 77843

Dr. V. R. Hodgson
Dr. Hussein A. Kamel Wayne State University
University of Arizona School of Medicine
Department of Aerospace and Detroit, Michigan 48202
Mechanical Engineering

Tucson, Arizona 85721 Dean B. A. Boley
Northwestern University

Dr. S. J. Fenves Department of Civil Engineering
Carnegie-Mellon University Evanston, Illinois 60201
Department of Civil Engineering
Schenley Park Professor P. G. Hodge, Jr.
Pittsburgh, Pennsylvania 15213 University of Minnesota

Department of Aerospace Engineering
Dr. Ronald L. Huston and Mechanics
Department of Engineering Analysis Minneapolis, Minnesota 55455
University of Cincinnati
Cincinnati, Ohio 45221 Dr. D. C. Drucker

University of Illinois
Professor G. C. M. Sih Dean of Engineering
Lehigh University Urban&, Illinois 61801
Institute of Fracture and

Solid Mechanics Professor N. M. Newmark
Bethlehem, Pennsylvania 18u15 University of Illinois

Department of Civil Engineering
Professor Albert S. Kobayashi Urbana, Illinois 61803
University of Washington
Department of Mechanical Engineering Professor E. Reissner
Seattle, Washington 98105 University of California, San Diego

Department of Applied Mechanics
Professor Daniel Frederick La Jolla, California 92037
Virginia Polytechnic Institute and

State University Professor William A. Nash
Department of Engineering Mechanics University of Massachusetts
Blacksburg, Virginia 24061 Department of Mechanics and

Aerospace Engineering
Amherst, Massachusetts 01002 [_i
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* Universities (Con't) Universities (Con't)

Professor G. Herrmann Professor Joseph L. Rose
Stanford University Drexel University
Department of Applied Mechanics Department of Mechanical Engineering
Stanford, California 94305 and Mechanics

Philadelphia, Pennsylvania 19104
Professor J. D. Achenbach
Northwest University Professor B. K. Donaldson
Department of Civil Engineering University of Maryland

* Evanston, Illinois 60201 Aerospace Engineering Department
College Park, Maryland 20742

- - Professor S. B. Dong
University of California Professor Joseph A. Clark

" Department of Mechanics Catholic University of America
Los Angeles, California 90024 Department of Mechanical Engineering

Washington, D.C. 20064
: S oProfessor Burt Paul

University of Pennsylvania Dr. Samuel B. Batdorf
Towns School of Civil and University of California
Mechanical Engineering School of Engineering

Philadelphia, Pennsylvania 19104 and Applied ScienceI -Los Angeles, California 90024
Professor H. W. Liu

low Syracuse University Professor Isaac Fried
Department of Chemical Engineering Boston University

and Metallurgy Department of Mathematics
Syracuse, New York 13210 Boston, Massachusetts 02215

Professor S. Bodner Professor E. Krempl
Technion R&D Foundation Rensselaer Polytechnic Institute
Haifa, Israel Division of Engineering

Engineering Mechanics
Professor Werner Goldsmith Troy, New York 12181
University of California
Department of Mechanical Engineering Dr. Jack R. Vinson

- Berkeley, California 94720 University of Delaware
Department of Mechanical and Aerospace

Professor R. S. Rivlin Engineering and the Center for
Lehigh University Composite Materials
Center for the Application Newark, Delaware 19711

of Mathemat ics
Bethlehem, Pennsylvania 18015 Dr. J. Duffy

Brown University
Professor F. A. Cozzarelli Division of Engineering
State University of New York at Providence, Rhode Island 02912

Buffalo
Division of Interdisciplinary Studies Dr. J. L. Swedlow
Karr Parker Engineering Building Carnegie-Mellon University
Chemistry Road Department of Mechanical Engineering
Buffalo, New York 14214 Pittsburgh, Pennsylvania 15213

I
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Universities (Con't) Universities (Con't)

Dr. V. K. Varadan Professor V. H. Neubert
Ohio State University Research Foundation Pennsylvania State University
Department of Engineering Mechanics Department of Engineering Science
Columbus, Ohio 43210 and Mechanics

University Park, Pennsylvania 16802
Dr. Z. Hashin
University of Pennsylvania Professor A. W. Leissa
Department of Metallurgy and Ohio State University
Materials Science Department of Engineering Mechanics

College of Engineering and Columbus, Ohio 43212
Applied Science

Philadelphia, Pennsylvania 19104 Professor C. A. Brebbia
University of California, Irvine

Dr. Jackson C. S. Yang Department of Civil Engineering
University of Maryland School of Engineering
Department of Mechanical Engineering Irvine, California 92717
College Park, Maryland 20742

Dr. George T. Rahn
Professor T. Y. Chang Vanderbilt University
University of Akron Mechanical Engineering and
Department of Civil Engineering Materials Science

Akron, Ohio 44325 Nashville, Tennessee 37235

Professor Charles W. Bert Dean Richard H. Gallagher
University of Oklahoma University of Arizona
School of Aerospace, Mechanical, College of Engineering

and Nuclear Engineering Tucson, Arizona 85721
Norman, Oklahoma 73019

Professor E. F. Rybicki
Professor Satya N. Atluri The University of Tulsa
Georgia Institute of Technology Department of Mechanical Engineering
School of Engineering and Tulsa, Oklahoma 74104
Mechanics

Atlanta, Georgia 30332 Dr. R. Haftka
Illinois Institute of Technology

Professor Graham F. Carey Department of Mechanics and Mechanical
University of Texas at Austin and Aerospace Engineering
Department of Aerospace Engineering Chicago, Illinois 60616

and Engineering Mechanics
Austin, Texas 78712 Professor J. G. de Oliveira

Massachusetts Institute of Technology

Dr. S. S. Wang Department of Ocean Engineering
University of Illinois 77 Massachusetts Avenue
Department of Theoretical and Cambridge, Massachusetts 02139

Applied Mechanics
Urbana, Illinois 61801 Dr. Bernard W. Shaffer

Polytechnic Institute of New York
Professor J. F. Abel Route 110

Cornell University Farmingdale, New York 11735
Department of Theoretical

and Applied Mechanics

Ithaca, New York 14853
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Industry and Research Institutes Industry and Research Institutes (Con't)

* , Dr. Norman Hobbs Dr. T. L. Geers
Kaman AviDyne Lockheed Missiles and Space Company

- Division of Kaman 3251 Hanover Street
Sciences Corporation Palo Alto, California 94304

Burlington, Massachusetts 01803

Mr. William Caywood
Argonne National Laboratory Applied Physics Laboratory

* . Library Services Department Johns Hopkins Road
9700 South Cass Avenue Laurel, Maryland 20810
Argonne, Illinois 60440

Dr. Robert E. Dunham
Dr. H. C. Junger Pacifica Technology
Cambridge Acoustical Associates P.O. Box 148
54 Rindge Avenue Extension Del Mar, California 92014
Cambridge, Massachusetts 02140

Dr. M. F. Kanninen
Mr. 1. H. Torrance Battelle Columbus Laboratories
General Dynamics Corporation 505 King Avenue
Electric Boat Division Columbus, Ohio 43201
Groton, Connecticut 06340

Dr. A. A. Hochrein
- Dr. J. E. Greenspon Daedalean Associates, Inc.

J. G. Engineering Research Associates Springlake Research Road
3831 Menlo Drive 15110 Frederick Road
Baltimore, Maryland 21215 Woodbine, Maryland 21797

Newport News Shipbuilding and Dr. James W. Jones
Dry Dock Company Swanson Service Corporation

* Library P.O. Box 5415
Newport News, Virginia 23607 Huntington Beach, California 92646

* o Dr. W. F. Bozich Dr. Robert E. Nickell
McDonnell Douglas Corporation Applied Science and Technology

S"5301 Bolsa Avenue 3344 North Torrey Pines Court
Huntington Beach, California 92647 Suite 220

La Jolla, California 92037
- Dr. H. N. Abramson

Southwest Research Institute Dr. Kevin Thomas
8500 Culebra Road Westinghouse Electric Corp.
San Antonio, Texas 78284 Advanced Reactors Division

P. 0. Box 158
* . . Dr. R. C. DeHart Madison, Pennsylvania 15663

Southwest Research Institute
- 8500 Culebra Road Dr. H. D. Hibbitt

* San Antonio, Texas 78284 Hibbitt & Karlsson, Inc.
132 George M. Cohan Boulevard

Dr. M. L. Baron Providence, Rhode Island 02903
Weidlinger Associates1 110 East 59th Street Dr. R. D. Mindlin
New York, New York 10022 89 Deer Hill Drive

L Ridgefield, Connecticut 06877
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industry and Research Institutes (Con't)

Dr. Richard E. Dame
Mega Engineering
11961 Tech Road
Silver Spring, Maryland 20904

Mr. G. M. Stanley
Lockheed Palo Alto Research
Laboratory

3251 Hanover Street
Palo Alto, California 94304

Mr. R. L. Cloud
Robert L. Cloud Associates, Inc.
2972 Adeline Street
Berkeley, California 94703
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